Data-Analyst / app.py
CCockrum's picture
Update app.py
d9cfe91 verified
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from scipy import stats
import re
import json
import os
import sqlite3
from datetime import datetime
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import io
from datetime import datetime
import base64
from PIL import Image
# Import the DataAnalysisChatbot class
#from paste import DataAnalysisChatbot
class DataAnalysisChatbot:
def __init__(self):
self.data = None
self.data_source = None
self.conversation_history = []
self.available_commands = {
"load": self.load_data,
"info": self.get_data_info,
"describe": self.describe_data,
"missing": self.check_missing_values,
"correlate": self.correlation_analysis,
"visualize": self.visualize_data,
"analyze": self.analyze_column,
"trend": self.analyze_trend,
"outliers": self.detect_outliers,
"predict": self.predictive_analysis,
"test": self.hypothesis_testing,
"report": self.generate_report,
"help": self.get_help
}
def process_query(self, query):
"""Process user query and route to appropriate function"""
# Add the user query to conversation history
self.conversation_history.append({"role": "user", "message": query, "timestamp": datetime.now()})
# Check if data is loaded (except for load command and help)
if self.data is None and not any(cmd in query.lower() for cmd in ["load", "help"]):
response = "Please load data first using the 'load' command. Example: load csv path/to/file.csv"
self._add_to_history(response)
return response
# Parse the command
command = self._extract_command(query)
if command in self.available_commands:
response = self.available_commands[command](query)
else:
# Natural language understanding would go here
# For now, use simple keyword matching
if "mean" in query.lower() or "average" in query.lower():
response = self.analyze_column(query)
elif "correlate" in query.lower() or "relationship" in query.lower():
response = self.correlation_analysis(query)
elif "visual" in query.lower() or "plot" in query.lower() or "chart" in query.lower() or "graph" in query.lower():
response = self.visualize_data(query)
else:
response = "I'm not sure how to process that query. Type 'help' for available commands."
self._add_to_history(response)
return response
def _extract_command(self, query):
"""Extract the main command from the query"""
words = query.lower().split()
for word in words:
if word in self.available_commands:
return word
return None
def _add_to_history(self, response):
"""Add bot response to conversation history"""
self.conversation_history.append({"role": "bot", "message": response, "timestamp": datetime.now()})
def _extract_column_names(self, query):
"""Extract column names mentioned in the query"""
if self.data is None:
return []
columns = []
for col in self.data.columns:
if col.lower() in query.lower():
columns.append(col)
return columns
# DATA ACCESS AND RETRIEVAL
def load_data(self, query):
"""Load data from various sources"""
query_lower = query.lower()
# CSV Loading
if "csv" in query_lower:
match = re.search(r'load\s+csv\s+(.+?)(?:\s|$)', query)
if match:
file_path = match.group(1)
try:
self.data = pd.read_csv(file_path)
self.data_source = f"CSV: {file_path}"
return f"Successfully loaded data from {file_path}. {len(self.data)} rows and {len(self.data.columns)} columns found."
except Exception as e:
return f"Error loading CSV file: {str(e)}"
# Excel Loading
elif "excel" in query_lower or "xlsx" in query_lower:
match = re.search(r'load\s+(?:excel|xlsx)\s+(.+?)(?:\s|$)', query)
if match:
file_path = match.group(1)
try:
self.data = pd.read_excel(file_path)
self.data_source = f"Excel: {file_path}"
return f"Successfully loaded data from Excel file {file_path}. {len(self.data)} rows and {len(self.data.columns)} columns found."
except Exception as e:
return f"Error loading Excel file: {str(e)}"
# SQL Database Loading
elif "sql" in query_lower or "database" in query_lower:
# Extract database path and query using regex
db_match = re.search(r'load\s+(?:sql|database)\s+(.+?)\s+query\s+(.+?)(?:\s|$)', query, re.IGNORECASE | re.DOTALL)
if db_match:
db_path = db_match.group(1)
sql_query = db_match.group(2)
try:
conn = sqlite3.connect(db_path)
self.data = pd.read_sql_query(sql_query, conn)
conn.close()
self.data_source = f"SQL: {db_path}, Query: {sql_query}"
return f"Successfully loaded data from SQL query. {len(self.data)} rows and {len(self.data.columns)} columns found."
except Exception as e:
return f"Error executing SQL query: {str(e)}"
# JSON Loading
elif "json" in query_lower:
match = re.search(r'load\s+json\s+(.+?)(?:\s|$)', query)
if match:
file_path = match.group(1)
try:
with open(file_path, 'r') as f:
json_data = json.load(f)
self.data = pd.json_normalize(json_data)
self.data_source = f"JSON: {file_path}"
return f"Successfully loaded data from JSON file {file_path}. {len(self.data)} rows and {len(self.data.columns)} columns found."
except Exception as e:
return f"Error loading JSON file: {str(e)}"
return "Please specify the data source format and path. Example: 'load csv data.csv' or 'load sql database.db query SELECT * FROM table'"
def get_data_info(self, query):
"""Get basic information about the loaded data"""
if self.data is None:
return "No data loaded. Please load data first."
info = f"Data Source: {self.data_source}\n"
info += f"Rows: {len(self.data)}\n"
info += f"Columns: {len(self.data.columns)}\n"
info += f"Column Names: {', '.join(self.data.columns)}\n"
info += f"Data Types:\n{self.data.dtypes.to_string()}\n"
memory_usage = self.data.memory_usage(deep=True).sum()
if memory_usage < 1024:
memory_str = f"{memory_usage} bytes"
elif memory_usage < 1024 * 1024:
memory_str = f"{memory_usage / 1024:.2f} KB"
else:
memory_str = f"{memory_usage / (1024 * 1024):.2f} MB"
info += f"Memory Usage: {memory_str}"
return info
def describe_data(self, query):
"""Provide descriptive statistics for the data"""
if self.data is None:
return "No data loaded. Please load data first."
# Check if specific columns are mentioned
columns = self._extract_column_names(query)
if columns:
try:
desc = self.data[columns].describe().to_string()
return f"Descriptive statistics for columns {', '.join(columns)}:\n{desc}"
except Exception as e:
return f"Error generating descriptive statistics: {str(e)}"
else:
# If no specific columns mentioned, describe all numeric columns
numeric_cols = self.data.select_dtypes(include=['number']).columns.tolist()
if not numeric_cols:
return "No numeric columns found in the data for descriptive statistics."
desc = self.data[numeric_cols].describe().to_string()
return f"Descriptive statistics for all numeric columns:\n{desc}"
def check_missing_values(self, query):
"""Check for missing values in the data"""
if self.data is None:
return "No data loaded. Please load data first."
missing_values = self.data.isnull().sum()
missing_percentage = (missing_values / len(self.data) * 100).round(2)
result = "Missing Values Analysis:\n"
for col, count in missing_values.items():
if count > 0:
result += f"{col}: {count} missing values ({missing_percentage[col]}%)\n"
if not any(missing_values > 0):
result += "No missing values found in the dataset."
else:
total_missing = missing_values.sum()
total_cells = self.data.size
overall_percentage = (total_missing / total_cells * 100).round(2)
result += f"\nOverall: {total_missing} missing values out of {total_cells} cells ({overall_percentage}%)"
return result
# DATA ANALYSIS AND INTERPRETATION
def analyze_column(self, query):
"""Analyze a specific column"""
if self.data is None:
return "No data loaded. Please load data first."
columns = self._extract_column_names(query)
if not columns:
return "Please specify a column name to analyze. Available columns: " + ", ".join(self.data.columns)
column = columns[0] # Take the first column mentioned
try:
col_data = self.data[column]
if pd.api.types.is_numeric_dtype(col_data):
# Numeric column analysis
stats = {
"Count": len(col_data),
"Missing": col_data.isnull().sum(),
"Mean": col_data.mean(),
"Median": col_data.median(),
"Mode": col_data.mode()[0] if not col_data.mode().empty else None,
"Std Dev": col_data.std(),
"Min": col_data.min(),
"Max": col_data.max(),
"25%": col_data.quantile(0.25),
"75%": col_data.quantile(0.75),
"Skewness": col_data.skew(),
"Kurtosis": col_data.kurt()
}
result = f"Analysis of column '{column}' (Numeric):\n"
for stat_name, stat_value in stats.items():
if isinstance(stat_value, float):
result += f"{stat_name}: {stat_value:.4f}\n"
else:
result += f"{stat_name}: {stat_value}\n"
# Check for outliers using IQR method
Q1 = stats["25%"]
Q3 = stats["75%"]
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = col_data[(col_data < lower_bound) | (col_data > upper_bound)]
result += f"Outliers (IQR method): {len(outliers)} found\n"
# Add histogram data as ASCII art or description
hist_data = np.histogram(col_data.dropna(), bins=10)
result += "\nDistribution Summary:\n"
max_count = max(hist_data[0])
for i, count in enumerate(hist_data[0]):
bin_start = f"{hist_data[1][i]:.2f}"
bin_end = f"{hist_data[1][i+1]:.2f}"
bar_length = int((count / max_count) * 20)
result += f"{bin_start} to {bin_end}: {'#' * bar_length} ({count})\n"
else:
# Categorical column analysis
value_counts = col_data.value_counts()
top_n = min(10, len(value_counts))
result = f"Analysis of column '{column}' (Categorical):\n"
result += f"Count: {len(col_data)}\n"
result += f"Missing: {col_data.isnull().sum()}\n"
result += f"Unique Values: {col_data.nunique()}\n"
result += f"\nTop {top_n} values:\n"
for value, count in value_counts.head(top_n).items():
percentage = (count / len(col_data)) * 100
result += f"{value}: {count} ({percentage:.2f}%)\n"
return result
except Exception as e:
return f"Error analyzing column '{column}': {str(e)}"
def correlation_analysis(self, query):
"""Analyze correlations between columns"""
if self.data is None:
return "No data loaded. Please load data first."
# Extract specific columns if mentioned
columns = self._extract_column_names(query)
# If no specific columns or fewer than 2 columns mentioned, use all numeric columns
if len(columns) < 2:
numeric_columns = self.data.select_dtypes(include=['number']).columns.tolist()
if len(numeric_columns) < 2:
return "Not enough numeric columns for correlation analysis."
# If we found numeric columns but none were specified, use all numeric
if not columns:
columns = numeric_columns
# If one was specified, find its highest correlations
elif len(columns) == 1:
target_col = columns[0]
if target_col not in numeric_columns:
return f"Column '{target_col}' is not numeric and cannot be used for correlation analysis."
# Get correlations with target column
corr_matrix = self.data[numeric_columns].corr()
target_corr = corr_matrix[target_col].sort_values(ascending=False)
result = f"Correlation analysis for '{target_col}':\n"
for col, corr_val in target_corr.items():
if col != target_col:
strength = ""
if abs(corr_val) > 0.7:
strength = "Strong"
elif abs(corr_val) > 0.3:
strength = "Moderate"
else:
strength = "Weak"
direction = "positive" if corr_val > 0 else "negative"
result += f"{col}: {corr_val:.4f} ({strength} {direction} correlation)\n"
return result
try:
# Calculate correlations between specified columns
corr_matrix = self.data[columns].corr()
result = "Correlation Matrix:\n"
result += corr_matrix.to_string()
# Find strongest correlations
corr_pairs = []
for i in range(len(columns)):
for j in range(i+1, len(columns)):
col1, col2 = columns[i], columns[j]
corr_val = corr_matrix.loc[col1, col2]
corr_pairs.append((col1, col2, corr_val))
# Sort by absolute correlation value
corr_pairs.sort(key=lambda x: abs(x[2]), reverse=True)
result += "\n\nStrongest Correlations:\n"
for col1, col2, corr_val in corr_pairs:
strength = ""
if abs(corr_val) > 0.7:
strength = "Strong"
elif abs(corr_val) > 0.3:
strength = "Moderate"
else:
strength = "Weak"
direction = "positive" if corr_val > 0 else "negative"
result += f"{col1} vs {col2}: {corr_val:.4f} ({strength} {direction} correlation)\n"
return result
except Exception as e:
return f"Error performing correlation analysis: {str(e)}"
def visualize_data(self, query):
"""Generate visualizations based on data"""
if self.data is None:
return "No data loaded. Please load data first."
# Extract columns from query
columns = self._extract_column_names(query)
# Determine visualization type from query
viz_type = None
if "scatter" in query.lower():
viz_type = "scatter"
elif "histogram" in query.lower() or "distribution" in query.lower():
viz_type = "histogram"
elif "box" in query.lower():
viz_type = "box"
elif "bar" in query.lower():
viz_type = "bar"
elif "pie" in query.lower():
viz_type = "pie"
elif "heatmap" in query.lower() or "correlation" in query.lower():
viz_type = "heatmap"
elif "line" in query.lower() or "trend" in query.lower():
viz_type = "line"
else:
# Default to bar chart for one column, scatter for two
if len(columns) == 1:
viz_type = "bar"
elif len(columns) >= 2:
viz_type = "scatter"
else:
return "Please specify columns and visualization type (scatter, histogram, box, bar, pie, heatmap, line)"
try:
plt.figure(figsize=(10, 6))
if viz_type == "scatter" and len(columns) >= 2:
plt.scatter(self.data[columns[0]], self.data[columns[1]])
plt.xlabel(columns[0])
plt.ylabel(columns[1])
plt.title(f"Scatter Plot: {columns[0]} vs {columns[1]}")
# Add regression line
if len(self.data) > 2: # Need at least 3 points for meaningful regression
x = self.data[columns[0]].values.reshape(-1, 1)
y = self.data[columns[1]].values
model = LinearRegression()
model.fit(x, y)
plt.plot(x, model.predict(x), color='red', linewidth=2)
# Add correlation coefficient
corr = self.data[columns].corr().loc[columns[0], columns[1]]
plt.annotate(f"r = {corr:.4f}", xy=(0.05, 0.95), xycoords='axes fraction')
elif viz_type == "histogram" and columns:
sns.histplot(self.data[columns[0]], kde=True)
plt.xlabel(columns[0])
plt.ylabel("Frequency")
plt.title(f"Histogram of {columns[0]}")
elif viz_type == "box" and columns:
if len(columns) == 1:
sns.boxplot(y=self.data[columns[0]])
plt.ylabel(columns[0])
else:
plt.boxplot([self.data[col].dropna() for col in columns])
plt.xticks(range(1, len(columns) + 1), columns, rotation=45)
plt.title(f"Box Plot of {', '.join(columns)}")
elif viz_type == "bar" and columns:
if len(columns) == 1:
# For a single column, show value counts
value_counts = self.data[columns[0]].value_counts().nlargest(15)
value_counts.plot(kind='bar')
plt.xlabel(columns[0])
plt.ylabel("Count")
plt.title(f"Bar Chart of {columns[0]} (Top 15 Categories)")
else:
# For multiple columns, show means
self.data[columns].mean().plot(kind='bar')
plt.ylabel("Mean Value")
plt.title(f"Mean Values of {', '.join(columns)}")
elif viz_type == "pie" and columns:
# Only use first column for pie chart
value_counts = self.data[columns[0]].value_counts().nlargest(10)
plt.pie(value_counts, labels=value_counts.index, autopct='%1.1f%%')
plt.title(f"Pie Chart of {columns[0]} (Top 10 Categories)")
elif viz_type == "heatmap":
# Use numeric columns for heatmap
if not columns:
columns = self.data.select_dtypes(include=['number']).columns.tolist()
if len(columns) < 2:
return "Need at least 2 numeric columns for heatmap."
corr_matrix = self.data[columns].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title("Correlation Heatmap")
elif viz_type == "line" and columns:
# Check if there's a datetime column to use as index
datetime_cols = [col for col in self.data.columns if pd.api.types.is_datetime64_dtype(self.data[col])]
if datetime_cols and len(columns) >= 1:
time_col = datetime_cols[0]
for col in columns:
if col != time_col:
plt.plot(self.data[time_col], self.data[col], label=col)
plt.xlabel(time_col)
plt.legend()
else:
# No datetime column, just plot the values
for col in columns:
plt.plot(self.data[col], label=col)
plt.legend()
plt.title(f"Line Plot of {', '.join(columns)}")
# Save figure to a temporary file
temp_file = f"temp_viz_{datetime.now().strftime('%Y%m%d%H%M%S')}.png"
plt.tight_layout()
plt.savefig(temp_file)
plt.close()
return f"Visualization created and saved as {temp_file}"
except Exception as e:
plt.close() # Close any open figures in case of error
return f"Error creating visualization: {str(e)}"
def analyze_trend(self, query):
"""Analyze trends over time or sequence"""
if self.data is None:
return "No data loaded. Please load data first."
# Extract columns from query
columns = self._extract_column_names(query)
if len(columns) < 1:
return "Please specify at least one column to analyze for trends."
try:
result = "Trend Analysis:\n"
# Look for a date/time column
date_columns = []
for col in self.data.columns:
if pd.api.types.is_datetime64_dtype(self.data[col]):
date_columns.append(col)
elif any(date_term in col.lower() for date_term in ["date", "time", "year", "month", "day"]):
try:
# Try to convert to datetime
pd.to_datetime(self.data[col])
date_columns.append(col)
except:
pass
# If we found date columns, use the first one
if date_columns:
time_col = date_columns[0]
result += f"Using {time_col} as the time variable.\n\n"
# Convert to datetime if not already
if not pd.api.types.is_datetime64_dtype(self.data[time_col]):
self.data[time_col] = pd.to_datetime(self.data[time_col], errors='coerce')
# Sort by time
data_sorted = self.data.sort_values(by=time_col)
for col in columns:
if col == time_col:
continue
if not pd.api.types.is_numeric_dtype(self.data[col]):
result += f"Skipping non-numeric column {col}\n"
continue
# Calculate trend statistics
result += f"Trend for {col}:\n"
# Calculate overall change
first_val = data_sorted[col].iloc[0]
last_val = data_sorted[col].iloc[-1]
total_change = last_val - first_val
pct_change = (total_change / first_val * 100) if first_val != 0 else float('inf')
result += f" Starting value: {first_val}\n"
result += f" Ending value: {last_val}\n"
result += f" Total change: {total_change} ({pct_change:.2f}%)\n"
# Perform trend analysis with linear regression
x = np.arange(len(data_sorted)).reshape(-1, 1)
y = data_sorted[col].values
# Handle missing values
mask = ~np.isnan(y)
x_clean = x[mask]
y_clean = y[mask]
if len(y_clean) >= 2: # Need at least 2 points for regression
model = LinearRegression()
model.fit(x_clean, y_clean)
slope = model.coef_[0]
avg_val = np.mean(y_clean)
result += f" Trend slope: {slope:.4f} per time unit\n"
result += f" Relative trend: {slope / avg_val * 100:.2f}% of mean per time unit\n"
# Determine if trend is significant
if abs(slope / avg_val) > 0.01:
direction = "increasing" if slope > 0 else "decreasing"
strength = "strongly" if abs(slope / avg_val) > 0.05 else "moderately"
result += f" The {col} is {strength} {direction} over time.\n"
else:
result += f" The {col} shows little change over time.\n"
# R-squared to show fit quality
y_pred = model.predict(x_clean)
r2 = r2_score(y_clean, y_pred)
result += f" R-squared: {r2:.4f} (higher means more consistent trend)\n"
# Calculate periodicity if enough data points
if len(y_clean) >= 4:
result += self._check_seasonality(y_clean)
result += "\n"
else:
# No date column found, use sequence order
result += "No date/time column found. Analyzing trends based on sequence order.\n\n"
for col in columns:
if not pd.api.types.is_numeric_dtype(self.data[col]):
result += f"Skipping non-numeric column {col}\n"
continue
# Get non-missing values
values = self.data[col].dropna().values
if len(values) < 2:
result += f"Not enough non-missing values in {col} for trend analysis.\n"
continue
# Calculate basic trend
result += f"Trend for {col}:\n"
# Linear regression for trend
x = np.arange(len(values)).reshape(-1, 1)
y = values
model = LinearRegression()
model.fit(x, y)
slope = model.coef_[0]
avg_val = np.mean(y)
result += f" Trend slope: {slope:.4f} per unit\n"
result += f" Relative trend: {slope / avg_val * 100:.2f}% of mean per unit\n"
# Determine trend direction and strength
if abs(slope / avg_val) > 0.01:
direction = "increasing" if slope > 0 else "decreasing"
strength = "strongly" if abs(slope / avg_val) > 0.05 else "moderately"
result += f" The {col} is {strength} {direction} over the sequence.\n"
else:
result += f" The {col} shows little change over the sequence.\n"
# R-squared
y_pred = model.predict(x)
r2 = r2_score(y, y_pred)
result += f" R-squared: {r2:.4f}\n"
# Check for simple patterns
if len(values) >= 4:
result += self._check_seasonality(values)
result += "\n"
return result
except Exception as e:
return f"Error analyzing trends: {str(e)}"
def _check_seasonality(self, values):
"""Helper function to check for seasonality in a time series"""
result = ""
# Compute autocorrelation
acf = []
mean = np.mean(values)
variance = np.var(values)
if variance == 0: # All values are the same
return " No seasonality detected (constant values).\n"
# Compute autocorrelation up to 1/3 of series length
max_lag = min(len(values) // 3, 20) # Max 20 lags
for lag in range(1, max_lag + 1):
numerator = 0
for i in range(len(values) - lag):
numerator += (values[i] - mean) * (values[i + lag] - mean)
acf.append(numerator / (len(values) - lag) / variance)
# Find potential seasonality by looking for peaks in autocorrelation
peaks = []
for i in range(1, len(acf) - 1):
if acf[i] > acf[i-1] and acf[i] > acf[i+1] and acf[i] > 0.2:
peaks.append((i+1, acf[i]))
if peaks:
# Sort by correlation strength
peaks.sort(key=lambda x: x[1], reverse=True)
result += " Potential seasonality detected with periods: "
result += ", ".join([f"{p[0]} (r={p[1]:.2f})" for p in peaks[:3]])
result += "\n"
else:
result += " No clear seasonality detected.\n"
return result
def detect_outliers(self, query):
"""Detect outliers in the data"""
if self.data is None:
return "No data loaded. Please load data first."
# Extract columns from query
columns = self._extract_column_names(query)
# If no columns specified, use all numeric columns
if not columns:
columns = self.data.select_dtypes(include=['number']).columns.tolist()
if not columns:
return "No numeric columns found for outlier detection."
try:
result = "Outlier Detection Results:\n"
for col in columns:
if not pd.api.types.is_numeric_dtype(self.data[col]):
result += f"Skipping non-numeric column: {col}\n"
continue
# Drop missing values
col_data = self.data[col].dropna()
if len(col_data) < 5:
result += f"Not enough data in {col} for outlier detection.\n"
continue
result += f"\nColumn: {col}\n"
# Method 1: IQR method
Q1 = col_data.quantile(0.25)
Q3 = col_data.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers_iqr = col_data[(col_data < lower_bound) | (col_data > upper_bound)]
result += f" IQR Method: {len(outliers_iqr)} outliers found\n"
result += f" Lower bound: {lower_bound:.4f}, Upper bound: {upper_bound:.4f}\n"
if len(outliers_iqr) > 0:
result += f" Outlier range: {outliers_iqr.min():.4f} to {outliers_iqr.max():.4f}\n"
if len(outliers_iqr) <= 10:
result += f" Outlier values: {', '.join(map(str, outliers_iqr.tolist()))}\n"
else:
result += f" First 5 outliers: {', '.join(map(str, outliers_iqr.iloc[:5].tolist()))}\n"
# Method 2: Z-score method
z_scores = stats.zscore(col_data)
outliers_zscore = col_data[abs(z_scores) > 3]
result += f" Z-score Method (|z| > 3): {len(outliers_zscore)} outliers found\n"
if len(outliers_zscore) > 0:
result += f" Outlier range: {outliers_zscore.min():.4f} to {outliers_zscore.max():.4f}\n"
if len(outliers_zscore) <= 10:
result += f" Outlier values: {', '.join(map(str, outliers_zscore.tolist()))}\n"
else:
result += f" First 5 outliers: {', '.join(map(str, outliers_zscore.iloc[:5].tolist()))}\n"
# Compare methods
common_outliers = set(outliers_iqr.index).intersection(set(outliers_zscore.index))
result += f" {len(common_outliers)} outliers detected by both methods\n"
# Impact of outliers
mean_with_outliers = col_data.mean()
mean_without_outliers = col_data[~col_data.index.isin(outliers_iqr.index)].mean()
impact = abs((mean_without_outliers - mean_with_outliers) / mean_with_outliers * 100)
result += f" Impact on mean: {impact:.2f}% change if IQR outliers removed\n"
return result
except Exception as e:
return f"Error detecting outliers: {str(e)}"
def predictive_analysis(self, query):
"""Perform simple predictive analysis"""
if self.data is None:
return "No data loaded. Please load data first."
# Extract target and features from query
columns = self._extract_column_names(query)
if len(columns) < 2:
return "Please specify at least two columns: one target and one or more features."
# Last column is target, rest are features
target_col = columns[-1]
feature_cols = columns[:-1]
try:
# Check if columns are numeric
for col in columns:
if not pd.api.types.is_numeric_dtype(self.data[col]):
return f"Column '{col}' is not numeric. Simple predictive analysis requires numeric data."
# Prepare data
X = self.data[feature_cols].dropna()
y = self.data.loc[X.index, target_col]
if len(X) < 10:
return "Not enough complete data rows for predictive analysis (need at least 10)."
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Fit model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
# Calculate metrics
train_mse = mean_squared_error(y_train, y_train_pred)
test_mse = mean_squared_error(y_test, y_test_pred)
train_r2 = r2_score(y_train, y_train_pred)
test_r2 = r2_score(y_test, y_test_pred)
# Prepare results
result = f"Predictive Analysis: Predicting '{target_col}' using {', '.join(feature_cols)}\n\n"
result += "Model Information:\n"
result += f" Linear Regression with {len(feature_cols)} feature(s)\n"
result += f" Training data: {len(X_train)} rows\n"
result += f" Testing data: {len(X_test)} rows\n\n"
result += "Feature Importance:\n"
for i, feature in enumerate(feature_cols):
result += f" {feature}: coefficient = {model.coef_[i]:.4f}\n"
result += f" Intercept: {model.intercept_:.4f}\n\n"
result += "Model Equation:\n"
equation = f"{target_col} = {model.intercept_:.4f}"
for i, feature in enumerate(feature_cols):
coef = model.coef_[i]
sign = "+" if coef >= 0 else ""
equation += f" {sign} {coef:.4f} Γ— {feature}"
result += f" {equation}\n\n"
result += "Model Performance:\n"
result += f" Training set:\n"
result += f" Mean Squared Error: {train_mse:.4f}\n"
result += f" RΒ² Score: {train_r2:.4f}\n\n"
result += f" Test set:\n"
result += f" Mean Squared Error: {test_mse:.4f}\n"
result += f" RΒ² Score: {test_r2:.4f}\n\n"
# Interpret the results
result += "Interpretation:\n"
# Interpret RΒ² score
if test_r2 >= 0.7:
result += " The model explains a high proportion of the variance in the target variable.\n"
elif test_r2 >= 0.4:
result += " The model explains a moderate proportion of the variance in the target variable.\n"
else:
result += " The model explains only a small proportion of the variance in the target variable.\n"
# Check for overfitting
if train_r2 - test_r2 > 0.2:
result += " The model shows signs of overfitting (performs much better on training than test data).\n"
# Feature importance interpretation
most_important_feature = feature_cols[abs(model.coef_).argmax()]
result += f" The most influential feature is '{most_important_feature}'.\n"
# Sample prediction
row_sample = X_test.iloc[0]
prediction = model.predict([row_sample])[0]
result += "\nSample Prediction:\n"
result += " For the values:\n"
for feature in feature_cols:
result += f" {feature} = {row_sample[feature]}\n"
result += f" Predicted {target_col} = {prediction:.4f}\n"
return result
except Exception as e:
return f"Error performing predictive analysis: {str(e)}"
def hypothesis_testing(self, query):
"""Perform hypothesis testing on the data"""
if self.data is None:
return "No data loaded. Please load data first."
# Extract columns from query
columns = self._extract_column_names(query)
if len(columns) == 0:
return "Please specify at least one column for hypothesis testing."
try:
result = "Hypothesis Testing Results:\n\n"
# Single column analysis (distribution tests)
if len(columns) == 1:
col = columns[0]
if not pd.api.types.is_numeric_dtype(self.data[col]):
return f"Column '{col}' is not numeric. Basic hypothesis testing requires numeric data."
data = self.data[col].dropna()
# Normality test
stat, p_value = stats.shapiro(data) if len(data) < 5000 else stats.normaltest(data)
result += f"Normality Test for '{col}':\n"
test_name = "Shapiro-Wilk" if len(data) < 5000 else "D'Agostino's KΒ²"
result += f" Test used: {test_name}\n"
result += f" Statistic: {stat:.4f}\n"
result += f" p-value: {p_value:.4f}\n"
result += f" Interpretation: The data is {'not ' if p_value < 0.05 else ''}normally distributed (95% confidence).\n\n"
# Basic statistics
mean = data.mean()
median = data.median()
std_dev = data.std()
# One-sample t-test (against 0 or population mean)
population_mean = 0 # Default null hypothesis mean
t_stat, p_value = stats.ttest_1samp(data, population_mean)
result += f"One-sample t-test for '{col}':\n"
result += f" Null Hypothesis: The mean of '{col}' is equal to {population_mean}\n"
result += f" Alternative Hypothesis: The mean of '{col}' is not equal to {population_mean}\n"
result += f" t-statistic: {t_stat:.4f}\n"
result += f" p-value: {p_value:.4f}\n"
result += f" Sample Mean: {mean:.4f}\n"
result += f" Interpretation: {'Reject' if p_value < 0.05 else 'Fail to reject'} the null hypothesis (95% confidence).\n"
result += f" In other words: The mean is {'statistically different from' if p_value < 0.05 else 'not statistically different from'} {population_mean}.\n"
# Two-column analysis
elif len(columns) == 2:
col1, col2 = columns
if not pd.api.types.is_numeric_dtype(self.data[col1]) or not pd.api.types.is_numeric_dtype(self.data[col2]):
return f"Both columns must be numeric for this hypothesis test."
data1 = self.data[col1].dropna()
data2 = self.data[col2].dropna()
# Check if the columns are independent or paired
are_paired = len(data1) == len(data2) and (self.data[columns].count().min() / self.data[columns].count().max() > 0.9)
test_type = "paired" if are_paired else "independent"
result += f"Two-sample {'Paired' if are_paired else 'Independent'} t-test:\n"
result += f" Comparing '{col1}' and '{col2}'\n"
result += f" Null Hypothesis: The means of the two columns are equal\n"
result += f" Alternative Hypothesis: The means of the two columns are not equal\n\n"
if are_paired:
# Use paired t-test for related samples
# Make sure we have pairs of non-NaN values
valid_rows = self.data[columns].dropna()
t_stat, p_value = stats.ttest_rel(valid_rows[col1], valid_rows[col2])
else:
# Use independent t-test
t_stat, p_value = stats.ttest_ind(data1, data2, equal_var=False) # Use Welch's t-test
result += f" t-statistic: {t_stat:.4f}\n"
result += f" p-value: {p_value:.4f}\n"
result += f" Mean of '{col1}': {data1.mean():.4f}\n"
result += f" Mean of '{col2}': {data2.mean():.4f}\n"
result += f" Difference in means: {data1.mean() - data2.mean():.4f}\n"
result += f" Interpretation: {'Reject' if p_value < 0.05 else 'Fail to reject'} the null hypothesis (95% confidence).\n"
result += f" In other words: The means are {'statistically different' if p_value < 0.05 else 'not statistically different'} from each other.\n"
# Categorical vs. numeric analysis
elif len(columns) == 2:
col1, col2 = columns
# Check if one is categorical and one is numeric
if (pd.api.types.is_numeric_dtype(self.data[col1]) and
not pd.api.types.is_numeric_dtype(self.data[col2])):
numeric_col, cat_col = col1, col2
elif (pd.api.types.is_numeric_dtype(self.data[col2]) and
not pd.api.types.is_numeric_dtype(self.data[col1])):
numeric_col, cat_col = col2, col1
else:
return "For ANOVA, one column should be categorical and one should be numeric."
# Perform one-way ANOVA
groups = []
labels = []
for category, group in self.data.groupby(cat_col):
if len(group[numeric_col].dropna()) > 0:
groups.append(group[numeric_col].dropna())
labels.append(str(category))
if len(groups) < 2:
return "Not enough groups with data for ANOVA."
f_stat, p_value = stats.f_oneway(*groups)
result += "One-way ANOVA:\n"
result += f" Comparing '{numeric_col}' across groups of '{cat_col}'\n"
result += f" Null Hypothesis: The means of '{numeric_col}' are equal across all groups\n"
result += f" Alternative Hypothesis: At least one group has a different mean\n\n"
result += f" F-statistic: {f_stat:.4f}\n"
result += f" p-value: {p_value:.4f}\n"
result += f" Group means:\n"
for i, (label, group) in enumerate(zip(labels, groups)):
result += f" {label}: {group.mean():.4f} (n={len(group)})\n"
result += f" Interpretation: {'Reject' if p_value < 0.05 else 'Fail to reject'} the null hypothesis (95% confidence).\n"
result += f" In other words: There {'is' if p_value < 0.05 else 'is no'} statistically significant difference between groups.\n"
# Multiple column comparison
else:
result += "Correlation Analysis:\n"
numeric_cols = [col for col in columns if pd.api.types.is_numeric_dtype(self.data[col])]
if len(numeric_cols) < 2:
return "Need at least two numeric columns for correlation analysis."
corr_matrix = self.data[numeric_cols].corr()
result += " Pearson Correlation Matrix:\n"
result += f"{corr_matrix.to_string()}\n\n"
result += " Significance Tests (p-values):\n"
p_matrix = pd.DataFrame(index=corr_matrix.index, columns=corr_matrix.columns)
for i in range(len(numeric_cols)):
for j in range(i+1, len(numeric_cols)):
col_i, col_j = numeric_cols[i], numeric_cols[j]
valid_data = self.data[[col_i, col_j]].dropna()
_, p_value = stats.pearsonr(valid_data[col_i], valid_data[col_j])
p_matrix.loc[col_i, col_j] = p_value
p_matrix.loc[col_j, col_i] = p_value
result += f"{p_matrix.to_string()}\n\n"
result += " Significant Correlations (p < 0.05):\n"
for i in range(len(numeric_cols)):
for j in range(i+1, len(numeric_cols)):
col_i, col_j = numeric_cols[i], numeric_cols[j]
if p_matrix.loc[col_i, col_j] < 0.05:
corr_val = corr_matrix.loc[col_i, col_j]
p_val = p_matrix.loc[col_i, col_j]
result += f" {col_i} vs {col_j}: r={corr_val:.4f}, p={p_val:.4f}\n"
return result
except Exception as e:
return f"Error performing hypothesis testing: {str(e)}"
def generate_report(self, query):
"""Generate a comprehensive report on the data"""
if self.data is None:
return "No data loaded. Please load data first."
try:
report = "# Data Analysis Report\n\n"
# 1. Dataset Overview
report += "## 1. Dataset Overview\n\n"
report += f"**Data Source:** {self.data_source}\n"
report += f"**Number of Rows:** {len(self.data)}\n"
report += f"**Number of Columns:** {len(self.data.columns)}\n\n"
# Column types summary
dtype_counts = {}
for dtype in self.data.dtypes:
dtype_name = str(dtype)
if dtype_name in dtype_counts:
dtype_counts[dtype_name] += 1
else:
dtype_counts[dtype_name] = 1
report += "**Column Data Types:**\n"
for dtype, count in dtype_counts.items():
report += f"- {dtype}: {count} columns\n"
report += "\n"
# 2. Data Quality Assessment
report += "## 2. Data Quality Assessment\n\n"
# Missing values
missing_values = self.data.isnull().sum()
missing_percentage = (missing_values / len(self.data) * 100).round(2)
missing_cols = missing_values[missing_values > 0]
if len(missing_cols) > 0:
report += "**Missing Values:**\n"
for col, count in missing_cols.items():
report += f"- {col}: {count} missing values ({missing_percentage[col]}%)\n"
else:
report += "**Missing Values:** None\n"
report += "\n"
# 3. Descriptive Statistics
report += "## 3. Descriptive Statistics\n\n"
# Numeric columns
numeric_cols = self.data.select_dtypes(include=['number']).columns.tolist()
if numeric_cols:
report += "**Numeric Columns:**\n"
report += "```\n"
report += self.data[numeric_cols].describe().to_string()
report += "\n```\n\n"
# Categorical columns
cat_cols = self.data.select_dtypes(exclude=['number']).columns.tolist()
if cat_cols:
report += "**Categorical Columns:**\n"
for col in cat_cols[:5]: # Limit to first 5 for brevity
value_counts = self.data[col].value_counts().head(5)
report += f"Top values for '{col}':\n"
report += "```\n"
report += value_counts.to_string()
report += "\n```\n"
report += f"Unique values: {self.data[col].nunique()}\n\n"
if len(cat_cols) > 5:
report += f"(Analysis limited to first 5 out of {len(cat_cols)} categorical columns)\n\n"
# 4. Correlation Analysis
report += "## 4. Correlation Analysis\n\n"
if len(numeric_cols) >= 2:
corr_matrix = self.data[numeric_cols].corr()
report += "**Correlation Matrix:**\n"
report += "```\n"
report += corr_matrix.round(2).to_string()
report += "\n```\n\n"
# Strongest correlations
corr_pairs = []
for i in range(len(numeric_cols)):
for j in range(i+1, len(numeric_cols)):
col1, col2 = numeric_cols[i], numeric_cols[j]
corr_val = corr_matrix.loc[col1, col2]
if abs(corr_val) > 0.5: # Only report moderate to strong correlations
corr_pairs.append((col1, col2, corr_val))
if corr_pairs:
# Sort by absolute correlation value
corr_pairs.sort(key=lambda x: abs(x[2]), reverse=True)
report += "**Strongest Correlations:**\n"
for col1, col2, corr_val in corr_pairs[:10]: # Top 10
direction = "positive" if corr_val > 0 else "negative"
report += f"- {col1} vs {col2}: {corr_val:.4f} ({direction})\n"
report += "\n"
else:
report += "No moderate or strong correlations (|r| > 0.5) found between variables.\n\n"
else:
report += "Insufficient numeric columns for correlation analysis.\n\n"
# 5. Key Insights
report += "## 5. Key Insights\n\n"
insights = []
# Data quality insights
total_missing = missing_values.sum()
if total_missing > 0:
total_cells = self.data.size
overall_percentage = (total_missing / total_cells * 100).round(2)
if overall_percentage > 10:
insights.append(f"The dataset has a high proportion of missing values ({overall_percentage}% overall), which may require imputation or handling.")
# Distribution insights for numeric columns
for col in numeric_cols[:5]: # Limit to first 5 for brevity
col_data = self.data[col].dropna()
if len(col_data) == 0:
continue
mean = col_data.mean()
median = col_data.median()
skew = col_data.skew()
# Check for skewed distributions
if abs(skew) > 1:
skew_direction = "positively" if skew > 0 else "negatively"
insights.append(f"'{col}' is {skew_direction} skewed (skew={skew:.2f}), with mean={mean:.2f} and median={median:.2f}.")
# Check for outliers
Q1 = col_data.quantile(0.25)
Q3 = col_data.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = col_data[(col_data < lower_bound) | (col_data > upper_bound)]
outlier_percentage = (len(outliers) / len(col_data) * 100).round(2)
if outlier_percentage > 5:
insights.append(f"'{col}' has a high proportion of outliers ({outlier_percentage}% of values).")
# Correlation insights
if len(corr_pairs) > 0:
top_corr = corr_pairs[0]
direction = "positively" if top_corr[2] > 0 else "negatively"
insights.append(f"The strongest relationship is between '{top_corr[0]}' and '{top_corr[1]}' (r={top_corr[2]:.2f}), which are {direction} correlated.")
# Report insights
if insights:
for i, insight in enumerate(insights, 1):
report += f"{i}. {insight}\n"
else:
report += "No significant insights detected based on initial analysis.\n"
report += "\n"
# 6. Next Steps
report += "## 6. Recommendations for Further Analysis\n\n"
recommendations = [
"Conduct more detailed analysis on columns with high missing value rates.",
"For skewed numeric distributions, consider transformations (e.g., log, sqrt) before analysis.",
"Investigate outliers to determine if they represent valid data points or errors.",
"For strongly correlated variables, explore causality or consider dimensionality reduction.",
"Consider predictive modeling using the identified relationships."
]
for i, rec in enumerate(recommendations, 1):
report += f"{i}. {rec}\n"
# Save the report to a file
report_filename = f"data_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
with open(report_filename, "w") as f:
f.write(report)
return f"Report generated and saved as {report_filename}"
except Exception as e:
return f"Error generating report: {str(e)}"
def get_help(self, query):
"""Display help information about available commands"""
help_text = "Available Commands:\n\n"
help_text += "DATA LOADING AND INSPECTION\n"
help_text += " load csv <path> - Load data from a CSV file\n"
help_text += " load excel <path> - Load data from an Excel file\n"
help_text += " load json <path> - Load data from a JSON file\n"
help_text += " load sql <db_path> query <sql> - Load data from a SQL database\n"
help_text += " info - Get basic information about the loaded data\n"
help_text += " describe [column1 column2...] - Get descriptive statistics\n"
help_text += " missing - Check for missing values in the data\n"
help_text += "\n"
help_text += "DATA ANALYSIS\n"
help_text += " analyze <column> - Analyze a specific column\n"
help_text += " correlate [column1 column2...] - Analyze correlations between columns\n"
help_text += " trend <column1 column2...> - Analyze trends over time or sequence\n"
help_text += " outliers [column1 column2...] - Detect outliers in the data\n"
help_text += " test <column1> [column2] - Perform hypothesis testing\n"
help_text += "\n"
help_text += "VISUALIZATION AND REPORTING\n"
help_text += " visualize <type> <column1 column2...> - Generate visualizations\n"
help_text += " Visualization types: scatter, histogram, box, bar, pie, heatmap, line\n"
help_text += " report - Generate a comprehensive report on the data\n"
help_text += "\n"
help_text += "EXAMPLES:\n"
help_text += " load csv data.csv\n"
help_text += " analyze temperature\n"
help_text += " correlate temperature humidity pressure\n"
help_text += " visualize scatter temperature humidity\n"
help_text += " trend sales date\n"
return help_text
# Page configuration
st.set_page_config(
page_title="Data Analysis Assistant",
page_icon="πŸ“Š",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state variables if they don't exist
if 'chatbot' not in st.session_state:
st.session_state.chatbot = DataAnalysisChatbot()
if 'conversation' not in st.session_state:
st.session_state.conversation = []
if 'data_loaded' not in st.session_state:
st.session_state.data_loaded = False
if 'current_file' not in st.session_state:
st.session_state.current_file = None
if 'data_preview' not in st.session_state:
st.session_state.data_preview = None
# Function to get a download link for a file
def get_download_link(file_path, link_text):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file_path)}">{link_text}</a>'
return href
# Function to convert matplotlib figure to Streamlit-compatible format
def plt_to_streamlit():
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return buf
# Custom CSS
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: 700;
color: #1E88E5;
margin-bottom: 1rem;
}
.sub-header {
font-size: 1.5rem;
font-weight: 600;
color: #333;
margin-bottom: 1rem;
}
.chat-user {
background-color: #E3F2FD;
padding: 10px 15px;
border-radius: 15px;
margin-bottom: 10px;
font-size: 1rem;
}
.chat-bot {
background-color: #F5F5F5;
padding: 10px 15px;
border-radius: 15px;
margin-bottom: 10px;
font-size: 1rem;
}
.file-info {
padding: 10px;
background-color: #E8F5E9;
border-radius: 5px;
margin-bottom: 10px;
}
.sidebar-content {
padding: 10px;
}
.highlight-text {
color: #1E88E5;
font-weight: bold;
}
.stButton>button {
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Sidebar for data loading and information
with st.sidebar:
st.markdown('<div class="sidebar-content">', unsafe_allow_html=True)
st.markdown('<p class="sub-header">πŸ“ Data Loading</p>', unsafe_allow_html=True)
# File uploader
uploaded_file = st.file_uploader("Upload your data file", type=['csv', 'xlsx', 'json', 'db', 'sqlite'])
# Load data button (only show if file is uploaded)
if uploaded_file is not None:
file_type = uploaded_file.name.split('.')[-1].lower()
# Save the uploaded file to a temporary location
temp_file_path = f"temp_upload_{datetime.now().strftime('%Y%m%d%H%M%S')}.{file_type}"
with open(temp_file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
# Load data based on file type
if st.button("Load Data"):
try:
if file_type == 'csv':
response = st.session_state.chatbot.process_query(f"load csv {temp_file_path}")
elif file_type in ['xlsx', 'xls']:
response = st.session_state.chatbot.process_query(f"load excel {temp_file_path}")
elif file_type == 'json':
response = st.session_state.chatbot.process_query(f"load json {temp_file_path}")
elif file_type in ['db', 'sqlite']:
# For SQL databases, we need to prompt for a query
st.session_state.current_file = temp_file_path
st.session_state.data_loaded = False
response = "SQL database loaded. Please enter a query in the main chat."
else:
response = "Unsupported file format. Please upload CSV, Excel, JSON, or SQLite files."
st.session_state.conversation.append({"role": "user", "message": f"Loading {uploaded_file.name}"})
st.session_state.conversation.append({"role": "bot", "message": response})
if "Successfully loaded data" in response:
st.session_state.data_loaded = True
st.session_state.current_file = temp_file_path
# Get data preview
if st.session_state.chatbot.data is not None:
st.session_state.data_preview = st.session_state.chatbot.data.head()
except Exception as e:
st.error(f"Error loading data: {str(e)}")
# Display data information if data is loaded
if st.session_state.data_loaded and st.session_state.chatbot.data is not None:
st.markdown('<p class="sub-header">πŸ“Š Data Information</p>', unsafe_allow_html=True)
# Display basic info
st.markdown('<div class="file-info">', unsafe_allow_html=True)
st.write(f"**Rows:** {len(st.session_state.chatbot.data)}")
st.write(f"**Columns:** {len(st.session_state.chatbot.data.columns)}")
st.write(f"**Data Source:** {st.session_state.chatbot.data_source}")
st.markdown('</div>', unsafe_allow_html=True)
# Quick actions
st.markdown('<p class="sub-header">⚑ Quick Actions</p>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
if st.button("Describe Data"):
response = st.session_state.chatbot.process_query("describe")
st.session_state.conversation.append({"role": "user", "message": "Describe data"})
st.session_state.conversation.append({"role": "bot", "message": response})
with col2:
if st.button("Check Missing"):
response = st.session_state.chatbot.process_query("missing")
st.session_state.conversation.append({"role": "user", "message": "Check missing values"})
st.session_state.conversation.append({"role": "bot", "message": response})
col1, col2 = st.columns(2)
with col1:
if st.button("Correlations"):
response = st.session_state.chatbot.process_query("correlate")
st.session_state.conversation.append({"role": "user", "message": "Show correlations"})
st.session_state.conversation.append({"role": "bot", "message": response})
with col2:
if st.button("Generate Report"):
response = st.session_state.chatbot.process_query("report")
st.session_state.conversation.append({"role": "user", "message": "Generate report"})
st.session_state.conversation.append({"role": "bot", "message": response})
# If report was generated, provide download link
if "Report generated and saved as" in response:
report_filename = response.split("Report generated and saved as ")[-1].strip()
st.markdown(
get_download_link(report_filename, "πŸ“₯ Download Report"),
unsafe_allow_html=True
)
# Help section
st.markdown('<p class="sub-header">❓ Help</p>', unsafe_allow_html=True)
if st.button("Show Commands"):
response = st.session_state.chatbot.process_query("help")
st.session_state.conversation.append({"role": "user", "message": "Show available commands"})
st.session_state.conversation.append({"role": "bot", "message": response})
st.markdown('</div>', unsafe_allow_html=True)
# Main area
st.markdown('<h1 class="main-header">πŸ“Š Data Analysis Assistant</h1>', unsafe_allow_html=True)
# Show data preview if data is loaded
if st.session_state.data_loaded and st.session_state.data_preview is not None:
st.markdown('<p class="sub-header">Data Preview</p>', unsafe_allow_html=True)
st.dataframe(st.session_state.data_preview, use_container_width=True)
# Display conversation history
st.markdown('<p class="sub-header">Chat History</p>', unsafe_allow_html=True)
chat_container = st.container()
with chat_container:
for message in st.session_state.conversation:
if message["role"] == "user":
st.markdown(f'<div class="chat-user">πŸ‘€ <b>You:</b> {message["message"]}</div>', unsafe_allow_html=True)
else:
# Process bot messages for special content
bot_message = message["message"]
# Check if it's a visualization result
if "Visualization created and saved as" in bot_message:
# Extract the filename and load the image
img_file = bot_message.split("Visualization created and saved as ")[-1].strip()
if os.path.exists(img_file):
st.markdown(f'<div class="chat-bot">πŸ€– <b>Assistant:</b></div>', unsafe_allow_html=True)
try:
img = Image.open(img_file)
st.image(img, caption="Generated Visualization", use_column_width=True)
except Exception as e:
st.error(f"Error displaying visualization: {str(e)}")
st.markdown(f'<div class="chat-bot">πŸ€– <b>Assistant:</b> {bot_message}</div>', unsafe_allow_html=True)
else:
st.markdown(f'<div class="chat-bot">πŸ€– <b>Assistant:</b> {bot_message}</div>', unsafe_allow_html=True)
# Check if it's a report result
elif "Report generated and saved as" in bot_message:
report_filename = bot_message.split("Report generated and saved as ")[-1].strip()
st.markdown(
f'<div class="chat-bot">πŸ€– <b>Assistant:</b> {bot_message}<br/>{get_download_link(report_filename, "πŸ“₯ Download Report")}</div>',
unsafe_allow_html=True
)
# Regular message
else:
# Format code blocks
if "```" in bot_message:
parts = bot_message.split("```")
formatted_message = ""
for i, part in enumerate(parts):
if i % 2 == 0: # Outside code block
formatted_message += part
else: # Inside code block
formatted_message += f"<pre style='background-color: #f0f0f0; padding: 10px; border-radius: 5px; overflow-x: auto;'>{part}</pre>"
st.markdown(f'<div class="chat-bot">πŸ€– <b>Assistant:</b> {formatted_message}</div>', unsafe_allow_html=True)
else:
st.markdown(f'<div class="chat-bot">πŸ€– <b>Assistant:</b> {bot_message}</div>', unsafe_allow_html=True)
# User input
st.markdown('<p class="sub-header">Ask a Question</p>', unsafe_allow_html=True)
user_input = st.text_area("Enter your query", height=100, key="user_query")
# Handle SQL query case
if st.session_state.current_file is not None and not st.session_state.data_loaded and st.session_state.current_file.endswith(('db', 'sqlite')):
sql_query = st.text_area("Enter SQL query", height=100, key="sql_query")
if st.button("Run SQL Query") and sql_query:
response = st.session_state.chatbot.process_query(f"load sql {st.session_state.current_file} query {sql_query}")
st.session_state.conversation.append({"role": "user", "message": f"SQL query: {sql_query}"})
st.session_state.conversation.append({"role": "bot", "message": response})
if "Successfully loaded data" in response:
st.session_state.data_loaded = True
if st.session_state.chatbot.data is not None:
st.session_state.data_preview = st.session_state.chatbot.data.head()
# Submit button for regular queries
if st.button("Submit") and user_input:
# Add user message to conversation
st.session_state.conversation.append({"role": "user", "message": user_input})
# Process query
response = st.session_state.chatbot.process_query(user_input)
# Add bot response to conversation
st.session_state.conversation.append({"role": "bot", "message": response})
# Clear input
st.session_state.user_query = ""
# Add warning for demo mode
st.markdown("---")
st.markdown("**Note:** File uploads and data processing are handled locally. Make sure you have the necessary dependencies installed.", unsafe_allow_html=True)
# Footer
st.markdown("---")
st.markdown("Β© 2025 Data Analysis Assistant | Built with Streamlit")