File size: 26,089 Bytes
7b87ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e83950
 
7b87ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e83950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b87ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e83950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b87ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e83950
7b87ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e83950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b87ab1
 
 
f3ca752
7b87ab1
 
 
 
8e83950
 
 
7b87ab1
 
 
 
f3ca752
7b87ab1
 
 
 
 
f3ca752
7b87ab1
 
 
 
f3ca752
7b87ab1
 
8e83950
7b87ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e83950
 
 
 
 
7b87ab1
 
f3ca752
7b87ab1
 
8e83950
 
 
7b87ab1
 
 
 
 
 
 
 
 
 
 
 
8e83950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3ca752
7b87ab1
8e83950
7b87ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3ca752
7b87ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3ca752
7b87ab1
8e83950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b87ab1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, r2_score
from scipy.optimize import differential_evolution
import warnings
warnings.filterwarnings('ignore')

class F1AerodynamicPredictor:
    def __init__(self):
        self.model = RandomForestRegressor(n_estimators=100, random_state=42)
        self.scaler = StandardScaler()
        self.is_trained = False
        self.current_data = None
        self.data_source = "None"
        self.feature_names = ['front_wing_angle', 'rear_wing_angle', 'ride_height', 
                             'suspension_stiffness', 'downforce', 'drag_coefficient',
                             'track_temp', 'wind_speed', 'track_grip']
        
    def generate_aero_data(self, num_samples=2000):
        """Generate realistic aerodynamic and setup data"""
        np.random.seed(42)
        
        # Car setup parameters
        front_wing_angle = np.random.uniform(5, 25, num_samples)  # degrees
        rear_wing_angle = np.random.uniform(8, 35, num_samples)   # degrees
        ride_height = np.random.uniform(20, 80, num_samples)      # mm
        suspension_stiffness = np.random.uniform(50, 150, num_samples)  # N/mm
        
        # Aerodynamic parameters (derived from setup)
        downforce = 800 + (front_wing_angle * 15) + (rear_wing_angle * 20) + np.random.normal(0, 50, num_samples)
        drag_coefficient = 0.8 + (front_wing_angle * 0.02) + (rear_wing_angle * 0.025) + np.random.normal(0, 0.1, num_samples)
        drag_coefficient = np.clip(drag_coefficient, 0.5, 2.0)
        
        # Environmental conditions
        track_temp = np.random.uniform(25, 45, num_samples)  # °C
        wind_speed = np.random.uniform(0, 15, num_samples)   # m/s
        track_grip = np.random.uniform(0.7, 1.0, num_samples)  # coefficient
        
        # Calculate lap time based on aerodynamic efficiency and setup
        # Base lap time around 90 seconds, modified by aero efficiency
        aero_efficiency = downforce / drag_coefficient
        base_lap_time = 90
        
        # Lap time calculation with realistic physics
        lap_time = (base_lap_time - 
                   (aero_efficiency - 800) * 0.01 +  # Aero efficiency impact
                   (ride_height - 50) * 0.05 +       # Ride height impact
                   (track_temp - 35) * 0.1 +         # Temperature impact
                   wind_speed * 0.2 +                # Wind resistance
                   (1 - track_grip) * 10 +           # Grip impact
                   np.random.normal(0, 1, num_samples))  # Random variation
        
        # Ensure realistic lap times
        lap_time = np.clip(lap_time, 75, 110)
        
        return pd.DataFrame({
            'front_wing_angle': front_wing_angle,
            'rear_wing_angle': rear_wing_angle,
            'ride_height': ride_height,
            'suspension_stiffness': suspension_stiffness,
            'downforce': downforce,
            'drag_coefficient': drag_coefficient,
            'track_temp': track_temp,
            'wind_speed': wind_speed,
            'track_grip': track_grip,
            'lap_time': lap_time
        })
    
    def validate_uploaded_data(self, df):
        """Validate uploaded data format and content"""
        required_columns = self.feature_names + ['lap_time']
        missing_columns = [col for col in required_columns if col not in df.columns]
        
        if missing_columns:
            return False, f"Missing required columns: {missing_columns}"
        
        # Check for reasonable value ranges
        validation_ranges = {
            'front_wing_angle': (0, 50),
            'rear_wing_angle': (0, 50),
            'ride_height': (10, 150),
            'suspension_stiffness': (10, 300),
            'downforce': (200, 2000),
            'drag_coefficient': (0.3, 3.0),
            'track_temp': (5, 60),
            'wind_speed': (0, 30),
            'track_grip': (0.3, 1.2),
            'lap_time': (60, 180)
        }
        
        validation_issues = []
        for col, (min_val, max_val) in validation_ranges.items():
            if col in df.columns:
                out_of_range = df[(df[col] < min_val) | (df[col] > max_val)]
                if len(out_of_range) > 0:
                    validation_issues.append(f"{col}: {len(out_of_range)} values out of range ({min_val}-{max_val})")
        
        if validation_issues:
            return False, f"Data validation issues: {'; '.join(validation_issues)}"
        
        return True, "Data validation successful"
    
    def load_user_data(self, file_path):
        """Load and validate user-uploaded data"""
        try:
            # Try to read the file
            if file_path.name.endswith('.csv'):
                df = pd.read_csv(file_path.name)
            elif file_path.name.endswith(('.xlsx', '.xls')):
                df = pd.read_excel(file_path.name)
            else:
                return None, "Unsupported file format. Please upload CSV or Excel files."
            
            # Validate data
            is_valid, message = self.validate_uploaded_data(df)
            if not is_valid:
                return None, message
            
            # Store the data
            self.current_data = df
            self.data_source = "User uploaded"
            
            return df, f"Successfully loaded {len(df)} records from uploaded file."
            
        except Exception as e:
            return None, f"Error loading file: {str(e)}"
    
    def train_model(self, data):
        """Train the aerodynamic performance model"""
        X = data[self.feature_names]
        y = data['lap_time']
        
        # Scale features
        X_scaled = self.scaler.fit_transform(X)
        
        # Train model
        self.model.fit(X_scaled, y)
        self.is_trained = True
        
        # Calculate performance metrics
        y_pred = self.model.predict(X_scaled)
        r2 = r2_score(y, y_pred)
        rmse = np.sqrt(mean_squared_error(y, y_pred))
        
        return r2, rmse
    
    def predict_lap_time(self, setup_params):
        """Predict lap time for given setup parameters"""
        if not self.is_trained:
            return None
        
        # Prepare input
        X = np.array([setup_params]).reshape(1, -1)
        X_scaled = self.scaler.transform(X)
        
        # Predict
        lap_time = self.model.predict(X_scaled)[0]
        return lap_time
    
    def optimize_setup(self, track_conditions):
        """Optimize car setup for given track conditions"""
        if not self.is_trained:
            return None
        
        track_temp, wind_speed, track_grip = track_conditions
        
        def objective(params):
            """Objective function to minimize lap time"""
            setup_params = list(params) + [track_temp, wind_speed, track_grip]
            return self.predict_lap_time(setup_params)
        
        # Define bounds for optimization (setup parameters only)
        bounds = [
            (5, 25),    # front_wing_angle
            (8, 35),    # rear_wing_angle
            (20, 80),   # ride_height
            (50, 150),  # suspension_stiffness
            (600, 1200), # downforce
            (0.5, 2.0)   # drag_coefficient
        ]
        
        # Optimize using differential evolution
        result = differential_evolution(objective, bounds, maxiter=100, seed=42)
        
        optimal_setup = result.x
        optimal_lap_time = result.fun
        
        return optimal_setup, optimal_lap_time
    
    def create_visualizations(self, data):
        """Create aerodynamic analysis visualizations"""
        fig, axes = plt.subplots(2, 2, figsize=(15, 12))
        
        # Downforce vs Drag trade-off
        aero_efficiency = data['downforce'] / data['drag_coefficient']
        scatter = axes[0, 0].scatter(data['drag_coefficient'], data['downforce'], 
                                   c=data['lap_time'], cmap='RdYlBu_r', alpha=0.6)
        axes[0, 0].set_xlabel('Drag Coefficient')
        axes[0, 0].set_ylabel('Downforce (N)')
        axes[0, 0].set_title('Downforce vs Drag Trade-off')
        plt.colorbar(scatter, ax=axes[0, 0], label='Lap Time (s)')
        axes[0, 0].grid(True, alpha=0.3)
        
        # Wing angle correlation
        axes[0, 1].scatter(data['front_wing_angle'], data['rear_wing_angle'], 
                          c=data['lap_time'], cmap='RdYlBu_r', alpha=0.6)
        axes[0, 1].set_xlabel('Front Wing Angle (°)')
        axes[0, 1].set_ylabel('Rear Wing Angle (°)')
        axes[0, 1].set_title('Wing Angle Configuration')
        axes[0, 1].grid(True, alpha=0.3)
        
        # Aerodynamic efficiency distribution
        axes[1, 0].hist(aero_efficiency, bins=30, alpha=0.7, color='skyblue', edgecolor='black')
        axes[1, 0].set_xlabel('Aerodynamic Efficiency (Downforce/Drag)')
        axes[1, 0].set_ylabel('Frequency')
        axes[1, 0].set_title('Aerodynamic Efficiency Distribution')
        axes[1, 0].grid(True, alpha=0.3)
        
        # Lap time vs environmental conditions
        axes[1, 1].scatter(data['track_temp'], data['lap_time'], alpha=0.6, label='Track Temp')
        axes[1, 1].set_xlabel('Track Temperature (°C)')
        axes[1, 1].set_ylabel('Lap Time (s)')
        axes[1, 1].set_title('Environmental Impact on Performance')
        axes[1, 1].grid(True, alpha=0.3)
        
        plt.tight_layout()
        return fig
    
    def compare_datasets(self, synthetic_data, user_data):
        """Compare user data with synthetic baseline"""
        fig, axes = plt.subplots(2, 2, figsize=(15, 12))
        
        # Lap time distributions
        axes[0, 0].hist(synthetic_data['lap_time'], bins=30, alpha=0.7, 
                       label='Synthetic', color='blue', edgecolor='black')
        axes[0, 0].hist(user_data['lap_time'], bins=30, alpha=0.7, 
                       label='User Data', color='red', edgecolor='black')
        axes[0, 0].set_xlabel('Lap Time (s)')
        axes[0, 0].set_ylabel('Frequency')
        axes[0, 0].set_title('Lap Time Distribution Comparison')
        axes[0, 0].legend()
        axes[0, 0].grid(True, alpha=0.3)
        
        # Aerodynamic efficiency comparison
        synthetic_eff = synthetic_data['downforce'] / synthetic_data['drag_coefficient']
        user_eff = user_data['downforce'] / user_data['drag_coefficient']
        
        axes[0, 1].scatter(synthetic_data['drag_coefficient'], synthetic_data['downforce'], 
                          alpha=0.5, label='Synthetic', color='blue')
        axes[0, 1].scatter(user_data['drag_coefficient'], user_data['downforce'], 
                          alpha=0.5, label='User Data', color='red')
        axes[0, 1].set_xlabel('Drag Coefficient')
        axes[0, 1].set_ylabel('Downforce (N)')
        axes[0, 1].set_title('Aerodynamic Trade-off Comparison')
        axes[0, 1].legend()
        axes[0, 1].grid(True, alpha=0.3)
        
        # Wing angle comparison
        axes[1, 0].scatter(synthetic_data['front_wing_angle'], synthetic_data['rear_wing_angle'], 
                          alpha=0.5, label='Synthetic', color='blue')
        axes[1, 0].scatter(user_data['front_wing_angle'], user_data['rear_wing_angle'], 
                          alpha=0.5, label='User Data', color='red')
        axes[1, 0].set_xlabel('Front Wing Angle (°)')
        axes[1, 0].set_ylabel('Rear Wing Angle (°)')
        axes[1, 0].set_title('Wing Configuration Comparison')
        axes[1, 0].legend()
        axes[1, 0].grid(True, alpha=0.3)
        
        # Performance correlation
        axes[1, 1].scatter(synthetic_eff, synthetic_data['lap_time'], 
                          alpha=0.5, label='Synthetic', color='blue')
        axes[1, 1].scatter(user_eff, user_data['lap_time'], 
                          alpha=0.5, label='User Data', color='red')
        axes[1, 1].set_xlabel('Aerodynamic Efficiency')
        axes[1, 1].set_ylabel('Lap Time (s)')
        axes[1, 1].set_title('Efficiency vs Performance')
        axes[1, 1].legend()
        axes[1, 1].grid(True, alpha=0.3)
        
        plt.tight_layout()
        return fig

# Initialize the predictor
predictor = F1AerodynamicPredictor()

def analyze_aerodynamics():
    """Main aerodynamic analysis function"""
    # Generate data
    data = predictor.generate_aero_data(2000)
    
    # Train model
    r2, rmse = predictor.train_model(data)
    
    # Create visualizations
    fig = predictor.create_visualizations(data)
    
    # Generate report
    report = f"""
    ## F1 Aerodynamic Performance Analysis (Synthetic Data)
    
    **Model Performance:**
    - R² Score: {r2:.3f}
    - RMSE: {rmse:.3f} seconds
    
    **Dataset Statistics:**
    - Total configurations analyzed: {len(data)}
    - Fastest lap time: {data['lap_time'].min():.2f}s
    - Slowest lap time: {data['lap_time'].max():.2f}s
    - Average lap time: {data['lap_time'].mean():.2f}s
    
    **Aerodynamic Insights:**
    - Average downforce: {data['downforce'].mean():.0f}N
    - Average drag coefficient: {data['drag_coefficient'].mean():.3f}
    - Best aero efficiency: {(data['downforce'] / data['drag_coefficient']).max():.1f}
    
    **Optimal Ranges:**
    - Front wing: {data['front_wing_angle'].quantile(0.1):.1f}° - {data['front_wing_angle'].quantile(0.9):.1f}°
    - Rear wing: {data['rear_wing_angle'].quantile(0.1):.1f}° - {data['rear_wing_angle'].quantile(0.9):.1f}°
    - Ride height: {data['ride_height'].quantile(0.1):.1f}mm - {data['ride_height'].quantile(0.9):.1f}mm
    """
    
    return fig, report

def upload_and_analyze_data(file):
    """Handle file upload and analysis"""
    if file is None:
        return None, "Please upload a data file.", None
    
    # Load user data
    user_data, message = predictor.load_user_data(file)
    if user_data is None:
        return None, message, None
    
    # Train model on user data
    r2, rmse = predictor.train_model(user_data)
    
    # Create visualizations
    fig = predictor.create_visualizations(user_data)
    
    # Generate report
    report = f"""
    ## F1 Aerodynamic Performance Analysis (User Data)
    
    **Data Load Status:** {message}
    
    **Model Performance:**
    - R² Score: {r2:.3f}
    - RMSE: {rmse:.3f} seconds
    
    **Dataset Statistics:**
    - Total configurations analyzed: {len(user_data)}
    - Fastest lap time: {user_data['lap_time'].min():.2f}s
    - Slowest lap time: {user_data['lap_time'].max():.2f}s
    - Average lap time: {user_data['lap_time'].mean():.2f}s
    
    **Aerodynamic Insights:**
    - Average downforce: {user_data['downforce'].mean():.0f}N
    - Average drag coefficient: {user_data['drag_coefficient'].mean():.3f}
    - Best aero efficiency: {(user_data['downforce'] / user_data['drag_coefficient']).max():.1f}
    
    **Data Quality Assessment:**
    - Missing values: {user_data.isnull().sum().sum()}
    - Duplicate records: {user_data.duplicated().sum()}
    - Data range validation: Passed
    """
    
    return fig, report, user_data

def compare_data_sources():
    """Compare user data with synthetic baseline"""
    if predictor.current_data is None:
        return None, "Please upload data first to enable comparison."
    
    # Generate synthetic data for comparison
    synthetic_data = predictor.generate_aero_data(len(predictor.current_data))
    
    # Create comparison visualization
    fig = predictor.compare_datasets(synthetic_data, predictor.current_data)
    
    # Generate comparison report
    synthetic_avg = synthetic_data['lap_time'].mean()
    user_avg = predictor.current_data['lap_time'].mean()
    
    report = f"""
    ## Data Comparison Report
    
    **Performance Comparison:**
    - Synthetic Data Average Lap Time: {synthetic_avg:.2f}s
    - User Data Average Lap Time: {user_avg:.2f}s
    - Difference: {user_avg - synthetic_avg:.2f}s
    
    **Setup Characteristics:**
    - Synthetic wing angles are more conservative
    - User data shows {'more aggressive' if user_avg < synthetic_avg else 'more conservative'} setup approach
    - Aerodynamic efficiency patterns {'align well' if abs(user_avg - synthetic_avg) < 2 else 'show significant differences'}
    
    **Recommendations:**
    - {'Your data suggests more aggressive setups than baseline' if user_avg < synthetic_avg else 'Consider more aggressive aerodynamic configurations'}
    - Validate setup ranges against your specific track conditions
    - Use comparison insights to refine optimization parameters
    """
    
    return fig, report

def predict_performance(front_wing, rear_wing, ride_height, suspension, downforce, drag_coeff, track_temp, wind_speed, track_grip):
    """Predict lap time for given setup"""
    if not predictor.is_trained:
        return "Please run the analysis first to train the model!"
    
    setup_params = [front_wing, rear_wing, ride_height, suspension, downforce, drag_coeff, track_temp, wind_speed, track_grip]
    lap_time = predictor.predict_lap_time(setup_params)
    
    data_source_note = f"(Model trained on: {predictor.data_source})"
    
    return f"Predicted Lap Time: {lap_time:.3f} seconds {data_source_note}"

def optimize_car_setup(track_temp, wind_speed, track_grip):
    """Optimize car setup for given conditions"""
    if not predictor.is_trained:
        return "Please run the analysis first to train the model!"
    
    track_conditions = [track_temp, wind_speed, track_grip]
    result = predictor.optimize_setup(track_conditions)
    
    if result is None:
        return "Optimization failed"
    
    optimal_setup, optimal_lap_time = result
    
    setup_report = f"""
    ## Optimal Car Setup
    
    **Predicted Lap Time: {optimal_lap_time:.3f} seconds**
    *(Model trained on: {predictor.data_source})*
    
    **Optimal Configuration:**
    - Front Wing Angle: {optimal_setup[0]:.1f}°
    - Rear Wing Angle: {optimal_setup[1]:.1f}°
    - Ride Height: {optimal_setup[2]:.1f}mm
    - Suspension Stiffness: {optimal_setup[3]:.1f} N/mm
    - Target Downforce: {optimal_setup[4]:.0f}N
    - Target Drag Coefficient: {optimal_setup[5]:.3f}
    
    **Track Conditions:**
    - Track Temperature: {track_temp}°C
    - Wind Speed: {wind_speed} m/s
    - Track Grip: {track_grip}
    """
    
    return setup_report

def create_sample_data():
    """Create sample data file for download"""
    sample_data = predictor.generate_aero_data(100)
    return sample_data.to_csv(index=False)

# Create Gradio interface
with gr.Blocks(title="F1 Aerodynamic Performance Predictor", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# F1 Aerodynamic Performance Predictor")
    gr.Markdown("AI-powered aerodynamic analysis and setup optimization for Formula 1 racing.")
    
    with gr.Tab("Synthetic Data Analysis"):
        gr.Markdown("### Analyze synthetic aerodynamic performance data")
        analyze_btn = gr.Button("🔍 Analyze Synthetic Data", variant="primary")
        
        with gr.Row():
            with gr.Column(scale=2):
                aero_plot = gr.Plot(label="Aerodynamic Analysis")
            with gr.Column(scale=1):
                aero_report = gr.Markdown(label="Analysis Report")
        
        analyze_btn.click(
            analyze_aerodynamics,
            outputs=[aero_plot, aero_report]
        )
    
    with gr.Tab("Upload & Analyze Data"):
        gr.Markdown("### Upload your own F1 data for analysis")
        gr.Markdown("**Required columns:** front_wing_angle, rear_wing_angle, ride_height, suspension_stiffness, downforce, drag_coefficient, track_temp, wind_speed, track_grip, lap_time")
        
        with gr.Row():
            with gr.Column():
                file_upload = gr.File(
                    label="Upload CSV or Excel file",
                    file_types=[".csv", ".xlsx", ".xls"]
                )
                
                sample_btn = gr.Button("Download Sample Data Format", variant="secondary")
                sample_file = gr.File(label="Sample Data", visible=False)
                
                upload_btn = gr.Button("Analyze Uploaded Data", variant="primary")
                
            with gr.Column():
                upload_status = gr.Markdown("No file uploaded yet.")
        
        with gr.Row():
            with gr.Column(scale=2):
                upload_plot = gr.Plot(label="Data Analysis")
            with gr.Column(scale=1):
                upload_report = gr.Markdown(label="Analysis Report")
        
        # Comparison section
        gr.Markdown("### Compare with Synthetic Baseline")
        compare_btn = gr.Button("Compare Data Sources", variant="secondary")
        
        with gr.Row():
            with gr.Column(scale=2):
                comparison_plot = gr.Plot(label="Data Comparison")
            with gr.Column(scale=1):
                comparison_report = gr.Markdown(label="Comparison Report")
        
        # Event handlers
        sample_btn.click(
            create_sample_data,
            outputs=[sample_file]
        )
        
        upload_btn.click(
            upload_and_analyze_data,
            inputs=[file_upload],
            outputs=[upload_plot, upload_report, upload_status]
        )
        
        compare_btn.click(
            compare_data_sources,
            outputs=[comparison_plot, comparison_report]
        )
    
    with gr.Tab("Performance Prediction"):
        gr.Markdown("### Predict lap time for specific setup")
        gr.Markdown("*Note: Train the model first using synthetic or uploaded data*")
        
        with gr.Row():
            with gr.Column():
                gr.Markdown("**Car Setup Parameters:**")
                front_wing_input = gr.Slider(5, 25, value=15, label="Front Wing Angle (°)")
                rear_wing_input = gr.Slider(8, 35, value=20, label="Rear Wing Angle (°)")
                ride_height_input = gr.Slider(20, 80, value=50, label="Ride Height (mm)")
                suspension_input = gr.Slider(50, 150, value=100, label="Suspension Stiffness (N/mm)")
                downforce_input = gr.Slider(600, 1200, value=900, label="Downforce (N)")
                drag_input = gr.Slider(0.5, 2.0, value=1.0, label="Drag Coefficient")
                
            with gr.Column():
                gr.Markdown("**Track Conditions:**")
                track_temp_input = gr.Slider(25, 45, value=35, label="Track Temperature (°C)")
                wind_speed_input = gr.Slider(0, 15, value=5, label="Wind Speed (m/s)")
                track_grip_input = gr.Slider(0.7, 1.0, value=0.85, label="Track Grip")
                
                predict_btn = gr.Button("🎯 Predict Lap Time", variant="secondary")
                
                lap_time_output = gr.Textbox(label="Lap Time Prediction", interactive=False)
        
        predict_btn.click(
            predict_performance,
            inputs=[front_wing_input, rear_wing_input, ride_height_input, suspension_input, 
                   downforce_input, drag_input, track_temp_input, wind_speed_input, track_grip_input],
            outputs=[lap_time_output]
        )
    
    with gr.Tab("Setup Optimization"):
        gr.Markdown("### Optimize car setup for track conditions")
        gr.Markdown("*Uses genetic algorithm to find optimal aerodynamic configuration*")
        
        with gr.Row():
            with gr.Column():
                gr.Markdown("**Track Conditions:**")
                opt_track_temp = gr.Slider(25, 45, value=35, label="Track Temperature (°C)")
                opt_wind_speed = gr.Slider(0, 15, value=5, label="Wind Speed (m/s)")
                opt_track_grip = gr.Slider(0.7, 1.0, value=0.85, label="Track Grip")
                
                optimize_btn = gr.Button("🔧 Optimize Setup", variant="primary")
            
            with gr.Column():
                optimization_output = gr.Markdown(label="Optimization Results")
        
        optimize_btn.click(
            optimize_car_setup,
            inputs=[opt_track_temp, opt_wind_speed, opt_track_grip],
            outputs=[optimization_output]
        )
    
    with gr.Tab("About"):
        gr.Markdown("""
        ## About This Enhanced Tool
        
        This F1 Aerodynamic Performance Predictor now supports both synthetic and real data analysis:
        
        **Dual Data Sources:**
        - **Synthetic Data**: Realistic simulated F1 aerodynamic data for learning and experimentation
        - **User Data**: Upload your own telemetry, test results, or historical performance data
        
        **Data Upload Features:**
        - CSV and Excel file support
        - Automatic data validation and quality checks
        - Sample data template download
        - Comparison analysis between your data and synthetic baseline
        
        **Enhanced Analysis:**
        - Model training on real or synthetic data
        - Data quality assessment and validation
        - Performance comparison between different datasets
        - Track which data source was used for predictions
        
        **Setup Optimization:**
        - Uses Differential Evolution algorithm for global optimization
        - Adapts to patterns in your specific data
        - Provides data-source-aware recommendations
        
        **Required Data Format:**
        Your uploaded data should include these columns:
        - front_wing_angle, rear_wing_angle, ride_height
        - suspension_stiffness, downforce, drag_coefficient
        - track_temp, wind_speed, track_grip, lap_time
        
        **Professional Applications:**
        - Validate simulation models against real telemetry
        - Identify setup trends and patterns in your data
        - Optimize configurations for specific track conditions
        - Compare your team's approach with industry baselines
        """)

if __name__ == "__main__":
    demo.launch()