Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
| 6 |
+
from sklearn.preprocessing import StandardScaler
|
| 7 |
+
from sklearn.metrics import classification_report, accuracy_score, mean_squared_error
|
| 8 |
+
import warnings
|
| 9 |
+
warnings.filterwarnings('ignore')
|
| 10 |
+
|
| 11 |
+
class F1PredictiveMaintenance:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.failure_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
|
| 14 |
+
self.wear_predictor = RandomForestRegressor(n_estimators=100, random_state=42)
|
| 15 |
+
self.scaler = StandardScaler()
|
| 16 |
+
self.is_trained = False
|
| 17 |
+
|
| 18 |
+
# Component definitions
|
| 19 |
+
self.components = {
|
| 20 |
+
'Engine': {'max_cycles': 7, 'critical_temp': 120, 'normal_temp': 95},
|
| 21 |
+
'Gearbox': {'max_cycles': 6, 'critical_temp': 100, 'normal_temp': 80},
|
| 22 |
+
'Turbocharger': {'max_cycles': 4, 'critical_temp': 140, 'normal_temp': 110},
|
| 23 |
+
'MGU-K': {'max_cycles': 5, 'critical_temp': 90, 'normal_temp': 70},
|
| 24 |
+
'MGU-H': {'max_cycles': 4, 'critical_temp': 130, 'normal_temp': 105},
|
| 25 |
+
'Suspension': {'max_cycles': 8, 'critical_temp': 60, 'normal_temp': 45},
|
| 26 |
+
'Brakes': {'max_cycles': 3, 'critical_temp': 200, 'normal_temp': 150},
|
| 27 |
+
'Tires': {'max_cycles': 1, 'critical_temp': 120, 'normal_temp': 80}
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
def generate_maintenance_data(self, num_samples=3000):
|
| 31 |
+
"""Generate realistic F1 component maintenance data"""
|
| 32 |
+
np.random.seed(42)
|
| 33 |
+
|
| 34 |
+
data = []
|
| 35 |
+
|
| 36 |
+
for _ in range(num_samples):
|
| 37 |
+
# Select random component
|
| 38 |
+
component = np.random.choice(list(self.components.keys()))
|
| 39 |
+
comp_info = self.components[component]
|
| 40 |
+
|
| 41 |
+
# Usage parameters
|
| 42 |
+
race_weekend = np.random.randint(1, 25) # Race weekend number
|
| 43 |
+
session_type = np.random.choice(['Practice', 'Qualifying', 'Race'])
|
| 44 |
+
laps_completed = np.random.randint(10, 70)
|
| 45 |
+
|
| 46 |
+
# Session intensity (Race > Qualifying > Practice)
|
| 47 |
+
intensity_multiplier = {'Practice': 0.7, 'Qualifying': 1.0, 'Race': 1.2}[session_type]
|
| 48 |
+
|
| 49 |
+
# Environmental conditions
|
| 50 |
+
ambient_temp = np.random.uniform(15, 35) # °C
|
| 51 |
+
humidity = np.random.uniform(40, 90) # %
|
| 52 |
+
track_temp = ambient_temp + np.random.uniform(5, 25)
|
| 53 |
+
|
| 54 |
+
# Operating conditions
|
| 55 |
+
max_temp = comp_info['normal_temp'] + np.random.normal(0, 10) * intensity_multiplier
|
| 56 |
+
max_temp = np.clip(max_temp, comp_info['normal_temp'] * 0.8, comp_info['critical_temp'] * 1.2)
|
| 57 |
+
|
| 58 |
+
avg_temp = max_temp * 0.8 + np.random.normal(0, 5)
|
| 59 |
+
vibration = np.random.exponential(2) * intensity_multiplier
|
| 60 |
+
load_factor = np.random.uniform(0.6, 1.2) * intensity_multiplier
|
| 61 |
+
|
| 62 |
+
# Component age and usage
|
| 63 |
+
cycles_used = np.random.uniform(0, comp_info['max_cycles'] * 1.5)
|
| 64 |
+
total_laps = cycles_used * np.random.uniform(300, 800) # Laps per cycle
|
| 65 |
+
|
| 66 |
+
# Wear calculation
|
| 67 |
+
temp_stress = max(0, (max_temp - comp_info['normal_temp']) / comp_info['normal_temp'])
|
| 68 |
+
usage_stress = cycles_used / comp_info['max_cycles']
|
| 69 |
+
environmental_stress = (track_temp - 30) / 50 + humidity / 200
|
| 70 |
+
|
| 71 |
+
wear_level = (usage_stress * 0.4 + temp_stress * 0.3 +
|
| 72 |
+
vibration * 0.1 + load_factor * 0.1 + environmental_stress * 0.1)
|
| 73 |
+
wear_level = np.clip(wear_level, 0, 1)
|
| 74 |
+
|
| 75 |
+
# Failure prediction
|
| 76 |
+
failure_probability = wear_level ** 2
|
| 77 |
+
if component in ['Engine', 'Gearbox']:
|
| 78 |
+
failure_probability *= 0.8 # More reliable components
|
| 79 |
+
elif component in ['Turbocharger', 'MGU-H']:
|
| 80 |
+
failure_probability *= 1.3 # Less reliable components
|
| 81 |
+
|
| 82 |
+
# Add random failures
|
| 83 |
+
failure_risk = failure_probability > 0.7 or np.random.random() < 0.05
|
| 84 |
+
|
| 85 |
+
# Maintenance recommendations
|
| 86 |
+
if wear_level > 0.8:
|
| 87 |
+
maintenance_action = 'Replace'
|
| 88 |
+
elif wear_level > 0.6:
|
| 89 |
+
maintenance_action = 'Inspect'
|
| 90 |
+
elif wear_level > 0.4:
|
| 91 |
+
maintenance_action = 'Monitor'
|
| 92 |
+
else:
|
| 93 |
+
maintenance_action = 'Normal'
|
| 94 |
+
|
| 95 |
+
data.append({
|
| 96 |
+
'component': component,
|
| 97 |
+
'race_weekend': race_weekend,
|
| 98 |
+
'session_type': session_type,
|
| 99 |
+
'laps_completed': laps_completed,
|
| 100 |
+
'ambient_temp': ambient_temp,
|
| 101 |
+
'track_temp': track_temp,
|
| 102 |
+
'humidity': humidity,
|
| 103 |
+
'max_temp': max_temp,
|
| 104 |
+
'avg_temp': avg_temp,
|
| 105 |
+
'vibration': vibration,
|
| 106 |
+
'load_factor': load_factor,
|
| 107 |
+
'cycles_used': cycles_used,
|
| 108 |
+
'total_laps': total_laps,
|
| 109 |
+
'wear_level': wear_level,
|
| 110 |
+
'failure_risk': failure_risk,
|
| 111 |
+
'maintenance_action': maintenance_action
|
| 112 |
+
})
|
| 113 |
+
|
| 114 |
+
return pd.DataFrame(data)
|
| 115 |
+
|
| 116 |
+
def train_models(self, data):
|
| 117 |
+
"""Train predictive maintenance models"""
|
| 118 |
+
# Prepare features
|
| 119 |
+
feature_columns = ['race_weekend', 'laps_completed', 'ambient_temp', 'track_temp',
|
| 120 |
+
'humidity', 'max_temp', 'avg_temp', 'vibration', 'load_factor',
|
| 121 |
+
'cycles_used', 'total_laps']
|
| 122 |
+
|
| 123 |
+
# Encode categorical variables
|
| 124 |
+
data_encoded = data.copy()
|
| 125 |
+
data_encoded['component_encoded'] = pd.Categorical(data['component']).codes
|
| 126 |
+
data_encoded['session_encoded'] = pd.Categorical(data['session_type']).codes
|
| 127 |
+
|
| 128 |
+
feature_columns.extend(['component_encoded', 'session_encoded'])
|
| 129 |
+
|
| 130 |
+
X = data_encoded[feature_columns]
|
| 131 |
+
X_scaled = self.scaler.fit_transform(X)
|
| 132 |
+
|
| 133 |
+
# Train failure classifier
|
| 134 |
+
y_failure = data['failure_risk']
|
| 135 |
+
self.failure_classifier.fit(X_scaled, y_failure)
|
| 136 |
+
|
| 137 |
+
# Train wear predictor
|
| 138 |
+
y_wear = data['wear_level']
|
| 139 |
+
self.wear_predictor.fit(X_scaled, y_wear)
|
| 140 |
+
|
| 141 |
+
self.is_trained = True
|
| 142 |
+
|
| 143 |
+
# Calculate performance metrics
|
| 144 |
+
failure_pred = self.failure_classifier.predict(X_scaled)
|
| 145 |
+
wear_pred = self.wear_predictor.predict(X_scaled)
|
| 146 |
+
|
| 147 |
+
failure_accuracy = accuracy_score(y_failure, failure_pred)
|
| 148 |
+
wear_rmse = np.sqrt(mean_squared_error(y_wear, wear_pred))
|
| 149 |
+
|
| 150 |
+
return failure_accuracy, wear_rmse, data_encoded
|
| 151 |
+
|
| 152 |
+
def predict_maintenance(self, component, race_weekend, session_type, laps_completed,
|
| 153 |
+
ambient_temp, track_temp, humidity, max_temp, avg_temp,
|
| 154 |
+
vibration, load_factor, cycles_used, total_laps):
|
| 155 |
+
"""Predict maintenance requirements for a component"""
|
| 156 |
+
if not self.is_trained:
|
| 157 |
+
return "Model not trained", "Model not trained", "Model not trained"
|
| 158 |
+
|
| 159 |
+
# Encode inputs
|
| 160 |
+
component_encoded = list(self.components.keys()).index(component)
|
| 161 |
+
session_encoded = ['Practice', 'Qualifying', 'Race'].index(session_type)
|
| 162 |
+
|
| 163 |
+
# Prepare feature vector
|
| 164 |
+
features = np.array([[race_weekend, laps_completed, ambient_temp, track_temp,
|
| 165 |
+
humidity, max_temp, avg_temp, vibration, load_factor,
|
| 166 |
+
cycles_used, total_laps, component_encoded, session_encoded]])
|
| 167 |
+
|
| 168 |
+
features_scaled = self.scaler.transform(features)
|
| 169 |
+
|
| 170 |
+
# Make predictions
|
| 171 |
+
failure_prob = self.failure_classifier.predict_proba(features_scaled)[0][1]
|
| 172 |
+
wear_level = self.wear_predictor.predict(features_scaled)[0]
|
| 173 |
+
|
| 174 |
+
# Determine maintenance action
|
| 175 |
+
if wear_level > 0.8 or failure_prob > 0.7:
|
| 176 |
+
maintenance_action = "REPLACE - Critical wear detected"
|
| 177 |
+
elif wear_level > 0.6 or failure_prob > 0.5:
|
| 178 |
+
maintenance_action = "INSPECT - High wear detected"
|
| 179 |
+
elif wear_level > 0.4 or failure_prob > 0.3:
|
| 180 |
+
maintenance_action = "MONITOR - Moderate wear"
|
| 181 |
+
else:
|
| 182 |
+
maintenance_action = "NORMAL - Good condition"
|
| 183 |
+
|
| 184 |
+
return f"Failure Risk: {failure_prob:.1%}", f"Wear Level: {wear_level:.1%}", maintenance_action
|
| 185 |
+
|
| 186 |
+
def create_maintenance_dashboard(self, data):
|
| 187 |
+
"""Create comprehensive maintenance visualization"""
|
| 188 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
| 189 |
+
|
| 190 |
+
# Component reliability analysis
|
| 191 |
+
component_failure_rate = data.groupby('component')['failure_risk'].mean().sort_values(ascending=False)
|
| 192 |
+
bars = axes[0, 0].bar(component_failure_rate.index, component_failure_rate.values,
|
| 193 |
+
color='lightcoral', alpha=0.7)
|
| 194 |
+
axes[0, 0].set_title('Component Failure Risk Analysis')
|
| 195 |
+
axes[0, 0].set_ylabel('Failure Risk')
|
| 196 |
+
axes[0, 0].tick_params(axis='x', rotation=45)
|
| 197 |
+
axes[0, 0].grid(True, alpha=0.3)
|
| 198 |
+
|
| 199 |
+
# Add value labels on bars
|
| 200 |
+
for bar in bars:
|
| 201 |
+
height = bar.get_height()
|
| 202 |
+
axes[0, 0].text(bar.get_x() + bar.get_width()/2., height,
|
| 203 |
+
f'{height:.1%}', ha='center', va='bottom')
|
| 204 |
+
|
| 205 |
+
# Wear level distribution
|
| 206 |
+
axes[0, 1].hist(data['wear_level'], bins=20, alpha=0.7, color='skyblue', edgecolor='black')
|
| 207 |
+
axes[0, 1].axvline(data['wear_level'].mean(), color='red', linestyle='--',
|
| 208 |
+
label=f'Mean: {data["wear_level"].mean():.2f}')
|
| 209 |
+
axes[0, 1].set_title('Component Wear Distribution')
|
| 210 |
+
axes[0, 1].set_xlabel('Wear Level')
|
| 211 |
+
axes[0, 1].set_ylabel('Frequency')
|
| 212 |
+
axes[0, 1].legend()
|
| 213 |
+
axes[0, 1].grid(True, alpha=0.3)
|
| 214 |
+
|
| 215 |
+
# Temperature vs Wear correlation
|
| 216 |
+
scatter = axes[1, 0].scatter(data['max_temp'], data['wear_level'],
|
| 217 |
+
c=data['failure_risk'], cmap='RdYlBu_r', alpha=0.6)
|
| 218 |
+
axes[1, 0].set_xlabel('Maximum Temperature (°C)')
|
| 219 |
+
axes[1, 0].set_ylabel('Wear Level')
|
| 220 |
+
axes[1, 0].set_title('Temperature Impact on Component Wear')
|
| 221 |
+
plt.colorbar(scatter, ax=axes[1, 0], label='Failure Risk')
|
| 222 |
+
axes[1, 0].grid(True, alpha=0.3)
|
| 223 |
+
|
| 224 |
+
# Maintenance action recommendations
|
| 225 |
+
maintenance_counts = data['maintenance_action'].value_counts()
|
| 226 |
+
wedges, texts, autotexts = axes[1, 1].pie(maintenance_counts.values,
|
| 227 |
+
labels=maintenance_counts.index,
|
| 228 |
+
autopct='%1.1f%%', startangle=90)
|
| 229 |
+
axes[1, 1].set_title('Maintenance Action Distribution')
|
| 230 |
+
|
| 231 |
+
plt.tight_layout()
|
| 232 |
+
return fig
|
| 233 |
+
|
| 234 |
+
def generate_maintenance_schedule(self, data):
|
| 235 |
+
"""Generate maintenance schedule recommendations"""
|
| 236 |
+
schedule = []
|
| 237 |
+
|
| 238 |
+
for component in self.components.keys():
|
| 239 |
+
comp_data = data[data['component'] == component]
|
| 240 |
+
|
| 241 |
+
if len(comp_data) == 0:
|
| 242 |
+
continue
|
| 243 |
+
|
| 244 |
+
avg_wear = comp_data['wear_level'].mean()
|
| 245 |
+
failure_rate = comp_data['failure_risk'].mean()
|
| 246 |
+
|
| 247 |
+
# Calculate recommended maintenance interval
|
| 248 |
+
if failure_rate > 0.3:
|
| 249 |
+
interval = "Every race weekend"
|
| 250 |
+
elif failure_rate > 0.15:
|
| 251 |
+
interval = "Every 2 race weekends"
|
| 252 |
+
elif failure_rate > 0.05:
|
| 253 |
+
interval = "Every 3 race weekends"
|
| 254 |
+
else:
|
| 255 |
+
interval = "Every 4 race weekends"
|
| 256 |
+
|
| 257 |
+
# Priority based on criticality
|
| 258 |
+
if component in ['Engine', 'Gearbox']:
|
| 259 |
+
priority = "High"
|
| 260 |
+
elif component in ['Turbocharger', 'MGU-K', 'MGU-H']:
|
| 261 |
+
priority = "Critical"
|
| 262 |
+
else:
|
| 263 |
+
priority = "Medium"
|
| 264 |
+
|
| 265 |
+
schedule.append({
|
| 266 |
+
'Component': component,
|
| 267 |
+
'Average Wear': f"{avg_wear:.1%}",
|
| 268 |
+
'Failure Rate': f"{failure_rate:.1%}",
|
| 269 |
+
'Recommended Interval': interval,
|
| 270 |
+
'Priority': priority
|
| 271 |
+
})
|
| 272 |
+
|
| 273 |
+
return pd.DataFrame(schedule)
|
| 274 |
+
|
| 275 |
+
# Initialize the maintenance system
|
| 276 |
+
maintenance_system = F1PredictiveMaintenance()
|
| 277 |
+
|
| 278 |
+
def analyze_maintenance_data():
|
| 279 |
+
"""Analyze maintenance data and train models"""
|
| 280 |
+
# Generate data
|
| 281 |
+
data = maintenance_system.generate_maintenance_data(3000)
|
| 282 |
+
|
| 283 |
+
# Train models
|
| 284 |
+
failure_acc, wear_rmse, data_encoded = maintenance_system.train_models(data)
|
| 285 |
+
|
| 286 |
+
# Create visualizations
|
| 287 |
+
fig = maintenance_system.create_maintenance_dashboard(data)
|
| 288 |
+
|
| 289 |
+
# Generate maintenance schedule
|
| 290 |
+
schedule = maintenance_system.generate_maintenance_schedule(data)
|
| 291 |
+
|
| 292 |
+
# Create summary report
|
| 293 |
+
report = f"""
|
| 294 |
+
## F1 Predictive Maintenance Analysis
|
| 295 |
+
|
| 296 |
+
**Model Performance:**
|
| 297 |
+
- Failure Prediction Accuracy: {failure_acc:.1%}
|
| 298 |
+
- Wear Level RMSE: {wear_rmse:.3f}
|
| 299 |
+
|
| 300 |
+
**Fleet Analysis:**
|
| 301 |
+
- Total components analyzed: {len(data)}
|
| 302 |
+
- Average wear level: {data['wear_level'].mean():.1%}
|
| 303 |
+
- Components at risk: {(data['wear_level'] > 0.6).sum()}
|
| 304 |
+
- High-priority maintenance: {(data['maintenance_action'] == 'Replace').sum()}
|
| 305 |
+
|
| 306 |
+
**Risk Assessment:**
|
| 307 |
+
- Highest risk component: {data.groupby('component')['failure_risk'].mean().idxmax()}
|
| 308 |
+
- Most reliable component: {data.groupby('component')['failure_risk'].mean().idxmin()}
|
| 309 |
+
- Critical temperature events: {(data['max_temp'] > 120).sum()}
|
| 310 |
+
|
| 311 |
+
**Maintenance Recommendations:**
|
| 312 |
+
- Immediate attention needed: {(data['wear_level'] > 0.8).sum()} components
|
| 313 |
+
- Scheduled inspection: {(data['wear_level'] > 0.6).sum()} components
|
| 314 |
+
- Monitoring required: {(data['wear_level'] > 0.4).sum()} components
|
| 315 |
+
"""
|
| 316 |
+
|
| 317 |
+
return fig, report, schedule
|
| 318 |
+
|
| 319 |
+
def predict_component_maintenance(component, race_weekend, session_type, laps_completed,
|
| 320 |
+
ambient_temp, track_temp, humidity, max_temp, avg_temp,
|
| 321 |
+
vibration, load_factor, cycles_used, total_laps):
|
| 322 |
+
"""Predict maintenance for specific component"""
|
| 323 |
+
if not maintenance_system.is_trained:
|
| 324 |
+
return "Please run the analysis first!", "", ""
|
| 325 |
+
|
| 326 |
+
failure_risk, wear_level, maintenance_action = maintenance_system.predict_maintenance(
|
| 327 |
+
component, race_weekend, session_type, laps_completed,
|
| 328 |
+
ambient_temp, track_temp, humidity, max_temp, avg_temp,
|
| 329 |
+
vibration, load_factor, cycles_used, total_laps
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
return failure_risk, wear_level, maintenance_action
|
| 333 |
+
|
| 334 |
+
# Create Gradio interface
|
| 335 |
+
with gr.Blocks(title="F1 Predictive Maintenance System", theme=gr.themes.Soft()) as demo:
|
| 336 |
+
gr.Markdown("# F1 Predictive Maintenance System")
|
| 337 |
+
gr.Markdown("AI-powered predictive maintenance for Formula 1 components with failure prediction and wear analysis.")
|
| 338 |
+
|
| 339 |
+
with gr.Tab("Maintenance Analysis"):
|
| 340 |
+
gr.Markdown("### Analyze component reliability and maintenance requirements")
|
| 341 |
+
analyze_btn = gr.Button("Analyze Fleet Data", variant="primary")
|
| 342 |
+
|
| 343 |
+
with gr.Row():
|
| 344 |
+
with gr.Column(scale=2):
|
| 345 |
+
maintenance_plot = gr.Plot(label="Maintenance Dashboard")
|
| 346 |
+
with gr.Column(scale=1):
|
| 347 |
+
maintenance_report = gr.Markdown(label="Analysis Report")
|
| 348 |
+
|
| 349 |
+
with gr.Row():
|
| 350 |
+
maintenance_schedule = gr.DataFrame(label="Maintenance Schedule", interactive=False)
|
| 351 |
+
|
| 352 |
+
analyze_btn.click(
|
| 353 |
+
analyze_maintenance_data,
|
| 354 |
+
outputs=[maintenance_plot, maintenance_report, maintenance_schedule]
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
with gr.Tab("Component Prediction"):
|
| 358 |
+
gr.Markdown("### Predict maintenance requirements for specific components")
|
| 359 |
+
gr.Markdown("*Note: Run the analysis first to train the models*")
|
| 360 |
+
|
| 361 |
+
with gr.Row():
|
| 362 |
+
with gr.Column():
|
| 363 |
+
gr.Markdown("**Component Information:**")
|
| 364 |
+
component_select = gr.Dropdown(
|
| 365 |
+
choices=list(maintenance_system.components.keys()),
|
| 366 |
+
value="Engine",
|
| 367 |
+
label="Component"
|
| 368 |
+
)
|
| 369 |
+
race_weekend_input = gr.Slider(1, 25, value=10, label="Race Weekend")
|
| 370 |
+
session_type_select = gr.Dropdown(
|
| 371 |
+
choices=["Practice", "Qualifying", "Race"],
|
| 372 |
+
value="Race",
|
| 373 |
+
label="Session Type"
|
| 374 |
+
)
|
| 375 |
+
laps_input = gr.Slider(10, 70, value=50, label="Laps Completed")
|
| 376 |
+
|
| 377 |
+
gr.Markdown("**Operating Conditions:**")
|
| 378 |
+
ambient_temp_input = gr.Slider(15, 35, value=25, label="Ambient Temperature (°C)")
|
| 379 |
+
track_temp_input = gr.Slider(20, 60, value=40, label="Track Temperature (°C)")
|
| 380 |
+
humidity_input = gr.Slider(40, 90, value=65, label="Humidity (%)")
|
| 381 |
+
max_temp_input = gr.Slider(60, 200, value=100, label="Max Component Temperature (°C)")
|
| 382 |
+
avg_temp_input = gr.Slider(50, 150, value=85, label="Average Temperature (°C)")
|
| 383 |
+
|
| 384 |
+
with gr.Column():
|
| 385 |
+
gr.Markdown("**Component Usage:**")
|
| 386 |
+
vibration_input = gr.Slider(0, 10, value=2, label="Vibration Level")
|
| 387 |
+
load_factor_input = gr.Slider(0.5, 1.5, value=1.0, label="Load Factor")
|
| 388 |
+
cycles_input = gr.Slider(0, 10, value=3, label="Cycles Used")
|
| 389 |
+
total_laps_input = gr.Slider(0, 5000, value=1500, label="Total Laps")
|
| 390 |
+
|
| 391 |
+
predict_btn = gr.Button("Predict Maintenance", variant="secondary")
|
| 392 |
+
|
| 393 |
+
gr.Markdown("**Predictions:**")
|
| 394 |
+
failure_risk_output = gr.Textbox(label="Failure Risk", interactive=False)
|
| 395 |
+
wear_level_output = gr.Textbox(label="Wear Level", interactive=False)
|
| 396 |
+
maintenance_action_output = gr.Textbox(label="Maintenance Action", interactive=False)
|
| 397 |
+
|
| 398 |
+
predict_btn.click(
|
| 399 |
+
predict_component_maintenance,
|
| 400 |
+
inputs=[component_select, race_weekend_input, session_type_select, laps_input,
|
| 401 |
+
ambient_temp_input, track_temp_input, humidity_input, max_temp_input,
|
| 402 |
+
avg_temp_input, vibration_input, load_factor_input, cycles_input, total_laps_input],
|
| 403 |
+
outputs=[failure_risk_output, wear_level_output, maintenance_action_output]
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
with gr.Tab("About"):
|
| 407 |
+
gr.Markdown("""
|
| 408 |
+
## About This System
|
| 409 |
+
|
| 410 |
+
This F1 Predictive Maintenance System uses advanced AI to predict component failures and optimize maintenance schedules:
|
| 411 |
+
|
| 412 |
+
**Failure Prediction:**
|
| 413 |
+
- Random Forest Classifier predicts component failure risk
|
| 414 |
+
- Considers operating conditions, usage patterns, and environmental factors
|
| 415 |
+
- Provides early warning for potential failures
|
| 416 |
+
|
| 417 |
+
**Wear Analysis:**
|
| 418 |
+
- Machine learning model predicts component wear levels
|
| 419 |
+
- Accounts for temperature stress, vibration, and load factors
|
| 420 |
+
- Enables proactive maintenance scheduling
|
| 421 |
+
|
| 422 |
+
**Key Features:**
|
| 423 |
+
- Real-time component health monitoring
|
| 424 |
+
- Predictive maintenance recommendations
|
| 425 |
+
- Temperature and environmental impact analysis
|
| 426 |
+
- Maintenance schedule optimization
|
| 427 |
+
- Component reliability assessment
|
| 428 |
+
|
| 429 |
+
**Component Coverage:**
|
| 430 |
+
- Engine and power unit components
|
| 431 |
+
- Transmission and drivetrain
|
| 432 |
+
- Hybrid energy systems (MGU-K, MGU-H)
|
| 433 |
+
- Suspension and braking systems
|
| 434 |
+
- Tires and consumables
|
| 435 |
+
|
| 436 |
+
**Technical Implementation:**
|
| 437 |
+
- Random Forest algorithms for robust predictions
|
| 438 |
+
- Feature engineering for component-specific factors
|
| 439 |
+
- Time-series analysis for wear progression
|
| 440 |
+
- Risk assessment and priority classification
|
| 441 |
+
|
| 442 |
+
**Racing Applications:**
|
| 443 |
+
- Prevent costly race retirements
|
| 444 |
+
- Optimize component allocation across seasons
|
| 445 |
+
- Reduce unexpected failures during critical sessions
|
| 446 |
+
- Enhance reliability through data-driven maintenance
|
| 447 |
+
""")
|
| 448 |
+
|
| 449 |
+
if __name__ == "__main__":
|
| 450 |
+
demo.launch()
|