CCockrum's picture
Update app.py
ea14eef verified
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import warnings
import io
import json
warnings.filterwarnings('ignore')
class F1TelemetryAnalyzer:
def __init__(self):
self.scaler = StandardScaler()
self.anomaly_detector = IsolationForest(contamination=0.1, random_state=42)
self.tire_model = LinearRegression()
self.fuel_model = LinearRegression()
self.is_trained = False
self.current_data = None
self.required_columns = ['speed', 'throttle', 'brake_pressure', 'tire_temp', 'engine_temp']
self.optional_columns = ['lap_time', 'lap_number', 'tire_degradation', 'fuel_remaining']
def generate_sample_data(self, num_samples=1000):
"""Generate realistic F1 telemetry data"""
np.random.seed(42)
# Base parameters
lap_time = np.random.normal(90, 5, num_samples) # seconds
speed = np.random.normal(200, 30, num_samples) # km/h
throttle = np.random.uniform(0, 100, num_samples) # %
brake_pressure = np.random.uniform(0, 100, num_samples) # %
tire_temp = np.random.normal(80, 15, num_samples) # °C
engine_temp = np.random.normal(95, 10, num_samples) # °C
# Introduce some realistic correlations
speed = np.clip(speed + throttle * 0.5 - brake_pressure * 0.3, 50, 300)
tire_temp = np.clip(tire_temp + speed * 0.1 + throttle * 0.2, 40, 120)
engine_temp = np.clip(engine_temp + throttle * 0.15 + speed * 0.05, 70, 130)
# Lap number for degradation modeling
lap_number = np.random.randint(1, 60, num_samples)
# Tire degradation (performance decreases over laps)
tire_degradation = 100 - (lap_number * 0.8 + np.random.normal(0, 2, num_samples))
tire_degradation = np.clip(tire_degradation, 60, 100)
# Fuel consumption (decreases with laps)
fuel_remaining = 100 - (lap_number * 1.5 + np.random.normal(0, 3, num_samples))
fuel_remaining = np.clip(fuel_remaining, 0, 100)
# Add some anomalies
anomaly_indices = np.random.choice(num_samples, size=int(num_samples * 0.05), replace=False)
speed[anomaly_indices] = np.random.uniform(20, 50, len(anomaly_indices)) # Very slow speeds
tire_temp[anomaly_indices] = np.random.uniform(130, 150, len(anomaly_indices)) # Overheating
return pd.DataFrame({
'lap_time': lap_time,
'speed': speed,
'throttle': throttle,
'brake_pressure': brake_pressure,
'tire_temp': tire_temp,
'engine_temp': engine_temp,
'lap_number': lap_number,
'tire_degradation': tire_degradation,
'fuel_remaining': fuel_remaining
})
def parse_uploaded_file(self, file):
"""Parse uploaded file and return DataFrame"""
try:
file_extension = file.name.split('.')[-1].lower()
if file_extension == 'csv':
df = pd.read_csv(file.name)
elif file_extension in ['xlsx', 'xls']:
df = pd.read_excel(file.name)
elif file_extension == 'json':
df = pd.read_json(file.name)
else:
return None, "Unsupported file format. Please upload CSV, Excel, or JSON files."
return df, f"File loaded successfully! Shape: {df.shape}"
except Exception as e:
return None, f"Error loading file: {str(e)}"
def get_column_suggestions(self, df):
"""Suggest column mappings based on common telemetry column names"""
suggestions = {}
column_names = df.columns.str.lower()
# Common mapping patterns
mapping_patterns = {
'speed': ['speed', 'velocity', 'spd', 'v'],
'throttle': ['throttle', 'thr', 'accelerator', 'gas'],
'brake_pressure': ['brake', 'brk', 'brake_pressure', 'brake_force'],
'tire_temp': ['tire_temp', 'tyre_temp', 'tire_temperature', 'tyre_temperature', 'temp_tire'],
'engine_temp': ['engine_temp', 'engine_temperature', 'water_temp', 'coolant_temp'],
'lap_time': ['lap_time', 'laptime', 'time', 'sector_time'],
'lap_number': ['lap', 'lap_number', 'lap_num', 'lap_count'],
'tire_degradation': ['tire_deg', 'tyre_deg', 'tire_wear', 'tyre_wear'],
'fuel_remaining': ['fuel', 'fuel_remaining', 'fuel_level', 'fuel_load']
}
for telemetry_field, patterns in mapping_patterns.items():
for pattern in patterns:
matches = column_names[column_names.str.contains(pattern, na=False)]
if len(matches) > 0:
suggestions[telemetry_field] = df.columns[matches.index[0]]
break
return suggestions
def validate_mapped_data(self, df, column_mapping):
"""Validate that mapped data meets requirements"""
missing_required = []
for col in self.required_columns:
if col not in column_mapping or column_mapping[col] is None:
missing_required.append(col)
if missing_required:
return False, f"Missing required columns: {', '.join(missing_required)}"
# Check if mapped columns exist in DataFrame
for telemetry_col, df_col in column_mapping.items():
if df_col and df_col not in df.columns:
return False, f"Column '{df_col}' not found in uploaded data"
return True, "Data validation successful"
def process_uploaded_data(self, df, column_mapping):
"""Process uploaded data with column mapping"""
processed_df = pd.DataFrame()
# Map columns
for telemetry_col, df_col in column_mapping.items():
if df_col and df_col in df.columns:
processed_df[telemetry_col] = df[df_col]
# Fill missing optional columns with defaults or calculated values
if 'lap_time' not in processed_df.columns:
processed_df['lap_time'] = np.random.normal(90, 5, len(processed_df))
if 'lap_number' not in processed_df.columns:
processed_df['lap_number'] = range(1, len(processed_df) + 1)
if 'tire_degradation' not in processed_df.columns:
# Estimate tire degradation based on available data
if 'lap_number' in processed_df.columns:
processed_df['tire_degradation'] = 100 - (processed_df['lap_number'] * 0.8)
else:
processed_df['tire_degradation'] = np.random.uniform(70, 100, len(processed_df))
if 'fuel_remaining' not in processed_df.columns:
# Estimate fuel consumption based on available data
if 'lap_number' in processed_df.columns:
processed_df['fuel_remaining'] = 100 - (processed_df['lap_number'] * 1.5)
else:
processed_df['fuel_remaining'] = np.random.uniform(50, 100, len(processed_df))
# Clean data
processed_df = processed_df.dropna()
# Clip values to reasonable ranges
processed_df['speed'] = np.clip(processed_df['speed'], 0, 400)
processed_df['throttle'] = np.clip(processed_df['throttle'], 0, 100)
processed_df['brake_pressure'] = np.clip(processed_df['brake_pressure'], 0, 100)
processed_df['tire_temp'] = np.clip(processed_df['tire_temp'], 20, 200)
processed_df['engine_temp'] = np.clip(processed_df['engine_temp'], 50, 150)
return processed_df
def detect_anomalies(self, data):
"""Detect anomalies in telemetry data"""
features = ['speed', 'throttle', 'brake_pressure', 'tire_temp', 'engine_temp']
X = data[features]
# Fit and predict anomalies
anomalies = self.anomaly_detector.fit_predict(X)
data['anomaly'] = anomalies
return data
def train_predictive_models(self, data):
"""Train tire degradation and fuel consumption models"""
# Prepare features for prediction
features = ['lap_number', 'speed', 'throttle', 'tire_temp', 'engine_temp']
X = data[features]
# Train tire degradation model
y_tire = data['tire_degradation']
self.tire_model.fit(X, y_tire)
# Train fuel consumption model
y_fuel = data['fuel_remaining']
self.fuel_model.fit(X, y_fuel)
self.is_trained = True
# Calculate model performance
tire_pred = self.tire_model.predict(X)
fuel_pred = self.fuel_model.predict(X)
tire_r2 = r2_score(y_tire, tire_pred)
fuel_r2 = r2_score(y_fuel, fuel_pred)
return tire_r2, fuel_r2
def predict_performance(self, lap_number, speed, throttle, tire_temp, engine_temp):
"""Predict tire degradation and fuel consumption"""
if not self.is_trained:
return "Model not trained yet!", ""
features = np.array([[lap_number, speed, throttle, tire_temp, engine_temp]])
tire_pred = self.tire_model.predict(features)[0]
fuel_pred = self.fuel_model.predict(features)[0]
return f"Predicted Tire Performance: {tire_pred:.1f}%", f"Predicted Fuel Remaining: {fuel_pred:.1f}%"
def create_visualizations(self, data):
"""Create telemetry visualizations"""
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
# Speed vs Lap Time
normal_data = data[data['anomaly'] == 1]
anomaly_data = data[data['anomaly'] == -1]
axes[0, 0].scatter(normal_data['speed'], normal_data['lap_time'],
alpha=0.6, label='Normal', color='blue')
axes[0, 0].scatter(anomaly_data['speed'], anomaly_data['lap_time'],
alpha=0.8, label='Anomaly', color='red')
axes[0, 0].set_xlabel('Speed (km/h)')
axes[0, 0].set_ylabel('Lap Time (s)')
axes[0, 0].set_title('Speed vs Lap Time (Anomaly Detection)')
axes[0, 0].legend()
axes[0, 0].grid(True, alpha=0.3)
# Tire Temperature Distribution
axes[0, 1].hist(normal_data['tire_temp'], bins=30, alpha=0.7, label='Normal', color='blue')
axes[0, 1].hist(anomaly_data['tire_temp'], bins=30, alpha=0.7, label='Anomaly', color='red')
axes[0, 1].set_xlabel('Tire Temperature (°C)')
axes[0, 1].set_ylabel('Frequency')
axes[0, 1].set_title('Tire Temperature Distribution')
axes[0, 1].legend()
axes[0, 1].grid(True, alpha=0.3)
# Tire Degradation over Laps
axes[1, 0].scatter(data['lap_number'], data['tire_degradation'], alpha=0.6, color='green')
axes[1, 0].set_xlabel('Lap Number')
axes[1, 0].set_ylabel('Tire Performance (%)')
axes[1, 0].set_title('Tire Degradation Over Race')
axes[1, 0].grid(True, alpha=0.3)
# Fuel Consumption
axes[1, 1].scatter(data['lap_number'], data['fuel_remaining'], alpha=0.6, color='orange')
axes[1, 1].set_xlabel('Lap Number')
axes[1, 1].set_ylabel('Fuel Remaining (%)')
axes[1, 1].set_title('Fuel Consumption Over Race')
axes[1, 1].grid(True, alpha=0.3)
plt.tight_layout()
return fig
# Initialize the analyzer
analyzer = F1TelemetryAnalyzer()
def load_file(file):
"""Load and preview uploaded file"""
if file is None:
return None, "No file uploaded", {}, ""
df, message = analyzer.parse_uploaded_file(file)
if df is None:
return None, message, {}, ""
# Get column suggestions
suggestions = analyzer.get_column_suggestions(df)
# Create preview
preview = df.head(10).to_string()
return df, message, suggestions, f"Data Preview (first 10 rows):\n{preview}"
def analyze_uploaded_data(df, speed_col, throttle_col, brake_col, tire_temp_col, engine_temp_col,
lap_time_col, lap_num_col, tire_deg_col, fuel_col):
"""Analyze uploaded telemetry data"""
if df is None:
return None, "No data loaded. Please upload a file first."
# Create column mapping
column_mapping = {
'speed': speed_col,
'throttle': throttle_col,
'brake_pressure': brake_col,
'tire_temp': tire_temp_col,
'engine_temp': engine_temp_col,
'lap_time': lap_time_col,
'lap_number': lap_num_col,
'tire_degradation': tire_deg_col,
'fuel_remaining': fuel_col
}
# Validate mapping
is_valid, validation_message = analyzer.validate_mapped_data(df, column_mapping)
if not is_valid:
return None, validation_message
# Process data
try:
processed_data = analyzer.process_uploaded_data(df, column_mapping)
analyzer.current_data = processed_data
# Detect anomalies
processed_data = analyzer.detect_anomalies(processed_data)
# Train models
tire_r2, fuel_r2 = analyzer.train_predictive_models(processed_data)
# Create visualizations
fig = analyzer.create_visualizations(processed_data)
# Generate report
total_samples = len(processed_data)
anomalies_detected = len(processed_data[processed_data['anomaly'] == -1])
anomaly_percentage = (anomalies_detected / total_samples) * 100
report = f"""
## F1 Telemetry Analysis Report (Uploaded Data)
**Data Summary:**
- Total samples analyzed: {total_samples}
- Anomalies detected: {anomalies_detected} ({anomaly_percentage:.1f}%)
**Model Performance:**
- Tire Degradation Model R²: {tire_r2:.3f}
- Fuel Consumption Model R²: {fuel_r2:.3f}
**Key Insights:**
- Average lap time: {processed_data['lap_time'].mean():.1f} seconds
- Average speed: {processed_data['speed'].mean():.1f} km/h
- Maximum tire temperature: {processed_data['tire_temp'].max():.1f}°C
- Minimum tire performance: {processed_data['tire_degradation'].min():.1f}%
**Anomaly Analysis:**
- Anomalies primarily detected in: Low speed conditions and high tire temperatures
- Recommended action: Investigate cooling systems and potential mechanical issues
"""
return fig, report
except Exception as e:
return None, f"Error processing data: {str(e)}"
def analyze_sample_data():
"""Analyze sample telemetry data"""
# Generate sample data
data = analyzer.generate_sample_data(1000)
analyzer.current_data = data
# Detect anomalies
data = analyzer.detect_anomalies(data)
# Train predictive models
tire_r2, fuel_r2 = analyzer.train_predictive_models(data)
# Create visualizations
fig = analyzer.create_visualizations(data)
# Generate summary report
total_samples = len(data)
anomalies_detected = len(data[data['anomaly'] == -1])
anomaly_percentage = (anomalies_detected / total_samples) * 100
report = f"""
## F1 Telemetry Analysis Report (Sample Data)
**Data Summary:**
- Total samples analyzed: {total_samples}
- Anomalies detected: {anomalies_detected} ({anomaly_percentage:.1f}%)
**Model Performance:**
- Tire Degradation Model R²: {tire_r2:.3f}
- Fuel Consumption Model R²: {fuel_r2:.3f}
**Key Insights:**
- Average lap time: {data['lap_time'].mean():.1f} seconds
- Average speed: {data['speed'].mean():.1f} km/h
- Maximum tire temperature: {data['tire_temp'].max():.1f}°C
- Minimum tire performance: {data['tire_degradation'].min():.1f}%
**Anomaly Analysis:**
- Anomalies primarily detected in: Low speed conditions and high tire temperatures
- Recommended action: Investigate cooling systems and potential mechanical issues
"""
return fig, report
def predict_telemetry(lap_number, speed, throttle, tire_temp, engine_temp):
"""Predict tire and fuel performance"""
tire_pred, fuel_pred = analyzer.predict_performance(lap_number, speed, throttle, tire_temp, engine_temp)
return tire_pred, fuel_pred
def update_column_dropdowns(df, suggestions):
"""Update dropdown options based on loaded data"""
if df is None:
return [gr.Dropdown(choices=[], value=None)] * 9
columns = [""] + list(df.columns)
return [
gr.Dropdown(choices=columns, value=suggestions.get('speed', ''), label="Speed Column"),
gr.Dropdown(choices=columns, value=suggestions.get('throttle', ''), label="Throttle Column"),
gr.Dropdown(choices=columns, value=suggestions.get('brake_pressure', ''), label="Brake Pressure Column"),
gr.Dropdown(choices=columns, value=suggestions.get('tire_temp', ''), label="Tire Temperature Column"),
gr.Dropdown(choices=columns, value=suggestions.get('engine_temp', ''), label="Engine Temperature Column"),
gr.Dropdown(choices=columns, value=suggestions.get('lap_time', ''), label="Lap Time Column"),
gr.Dropdown(choices=columns, value=suggestions.get('lap_number', ''), label="Lap Number Column"),
gr.Dropdown(choices=columns, value=suggestions.get('tire_degradation', ''), label="Tire Degradation Column"),
gr.Dropdown(choices=columns, value=suggestions.get('fuel_remaining', ''), label="Fuel Remaining Column")
]
# Create Gradio interface
with gr.Blocks(title="F1 Telemetry Data Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# F1 Telemetry Data Analyzer")
gr.Markdown("Advanced AI-powered analysis of Formula 1 telemetry data with anomaly detection and predictive modeling.")
gr.Markdown("**Choose your data source:** Upload your own telemetry files or generate synthetic data for testing!")
# Store dataframe in state
uploaded_df = gr.State(None)
with gr.Tab("Upload Real Data"):
gr.Markdown("### Upload your own telemetry data files")
gr.Markdown("**Supported formats:** CSV, Excel (.xlsx/.xls), JSON | **Perfect for:** Real racing data, simulator exports, custom datasets")
with gr.Row():
file_upload = gr.File(
label="Upload Telemetry Data",
file_types=[".csv", ".xlsx", ".xls", ".json"],
type="filepath"
)
load_status = gr.Textbox(label="Load Status", interactive=False)
data_preview = gr.Textbox(label="Data Preview", lines=10, interactive=False)
gr.Markdown("### Map Your Data Columns")
gr.Markdown("**Required columns** (marked with *): Speed*, Throttle*, Brake Pressure*, Tire Temperature*, Engine Temperature*")
with gr.Row():
with gr.Column():
speed_col = gr.Dropdown(label="Speed Column *", choices=[], value="")
throttle_col = gr.Dropdown(label="Throttle Column *", choices=[], value="")
brake_col = gr.Dropdown(label="Brake Pressure Column *", choices=[], value="")
tire_temp_col = gr.Dropdown(label="Tire Temperature Column *", choices=[], value="")
engine_temp_col = gr.Dropdown(label="Engine Temperature Column *", choices=[], value="")
with gr.Column():
lap_time_col = gr.Dropdown(label="Lap Time Column", choices=[], value="")
lap_num_col = gr.Dropdown(label="Lap Number Column", choices=[], value="")
tire_deg_col = gr.Dropdown(label="Tire Degradation Column", choices=[], value="")
fuel_col = gr.Dropdown(label="Fuel Remaining Column", choices=[], value="")
analyze_uploaded_btn = gr.Button("🔍 Analyze Uploaded Data", variant="primary")
with gr.Row():
with gr.Column(scale=2):
uploaded_plot_output = gr.Plot(label="Telemetry Visualizations")
with gr.Column(scale=1):
uploaded_report_output = gr.Markdown(label="Analysis Report")
# File upload event
file_upload.upload(
load_file,
inputs=[file_upload],
outputs=[uploaded_df, load_status, gr.State(), data_preview]
).then(
lambda df, suggestions: update_column_dropdowns(df, suggestions),
inputs=[uploaded_df, gr.State()],
outputs=[speed_col, throttle_col, brake_col, tire_temp_col, engine_temp_col,
lap_time_col, lap_num_col, tire_deg_col, fuel_col]
)
# Analyze uploaded data
analyze_uploaded_btn.click(
analyze_uploaded_data,
inputs=[uploaded_df, speed_col, throttle_col, brake_col, tire_temp_col, engine_temp_col,
lap_time_col, lap_num_col, tire_deg_col, fuel_col],
outputs=[uploaded_plot_output, uploaded_report_output]
)
with gr.Tab("Sample Data Analysis"):
gr.Markdown("### Generate and analyze synthetic telemetry data")
gr.Markdown("**Perfect for testing and learning!** Generate realistic F1 telemetry data with built-in anomalies and patterns.")
analyze_btn = gr.Button("Generate & Analyze Sample Data", variant="primary")
with gr.Row():
with gr.Column(scale=2):
plot_output = gr.Plot(label="Telemetry Visualizations")
with gr.Column(scale=1):
report_output = gr.Markdown(label="Analysis Report")
analyze_btn.click(
analyze_sample_data,
outputs=[plot_output, report_output]
)
with gr.Tab("Performance Prediction"):
gr.Markdown("### Predict tire performance and fuel consumption")
gr.Markdown("*Note: Run analysis first to train the models*")
with gr.Row():
with gr.Column():
lap_input = gr.Slider(1, 60, value=10, label="Lap Number")
speed_input = gr.Slider(50, 300, value=200, label="Speed (km/h)")
throttle_input = gr.Slider(0, 100, value=75, label="Throttle (%)")
tire_temp_input = gr.Slider(40, 120, value=80, label="Tire Temperature (°C)")
engine_temp_input = gr.Slider(70, 130, value=95, label="Engine Temperature (°C)")
predict_btn = gr.Button("🎯 Predict Performance", variant="secondary")
with gr.Column():
tire_pred_output = gr.Textbox(label="Tire Performance Prediction")
fuel_pred_output = gr.Textbox(label="Fuel Consumption Prediction")
predict_btn.click(
predict_telemetry,
inputs=[lap_input, speed_input, throttle_input, tire_temp_input, engine_temp_input],
outputs=[tire_pred_output, fuel_pred_output]
)
with gr.Tab("About"):
gr.Markdown("""
## About This Tool
This F1 Telemetry Data Analyzer demonstrates advanced AI techniques used in Formula 1 racing:
**Data Upload Features:**
- Support for CSV, Excel, and JSON file formats
- Automatic column detection and mapping suggestions
- Data validation and cleaning
- Flexible data structure handling
**Synthetic Data Generation:**
- Generate realistic F1 telemetry data for testing
- Built-in anomalies and realistic correlations
- Perfect for learning and demonstration
- No data upload required
**Anomaly Detection:**
- Uses Isolation Forest algorithm to detect unusual patterns in telemetry data
- Identifies potential mechanical issues or performance anomalies
- Helps engineers spot problems before they become critical
**Predictive Modeling:**
- Machine learning models predict tire degradation and fuel consumption
- Based on real-time telemetry inputs (speed, throttle, temperatures)
- Enables strategic decision-making during races
**Key Features:**
- Real-time telemetry processing simulation
- Advanced visualization of racing data
- Performance prediction for race strategy
- Anomaly detection for preventive maintenance
- Upload and analyze your own telemetry data
**Technical Stack:**
- Python with scikit-learn for ML models
- Isolation Forest for anomaly detection
- Linear regression for performance prediction
- Matplotlib for advanced visualizations
- Gradio for interactive web interface
**Data Format Requirements:**
- **Required columns:** Speed, Throttle, Brake Pressure, Tire Temperature, Engine Temperature
- **Optional columns:** Lap Time, Lap Number, Tire Degradation, Fuel Remaining
- Missing optional columns will be estimated automatically
""")
if __name__ == "__main__":
demo.launch()