Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.ensemble import IsolationForest
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
from sklearn.linear_model import LinearRegression
|
8 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
9 |
+
import warnings
|
10 |
+
warnings.filterwarnings('ignore')
|
11 |
+
|
12 |
+
class F1TelemetryAnalyzer:
|
13 |
+
def __init__(self):
|
14 |
+
self.scaler = StandardScaler()
|
15 |
+
self.anomaly_detector = IsolationForest(contamination=0.1, random_state=42)
|
16 |
+
self.tire_model = LinearRegression()
|
17 |
+
self.fuel_model = LinearRegression()
|
18 |
+
self.is_trained = False
|
19 |
+
|
20 |
+
def generate_sample_data(self, num_samples=1000):
|
21 |
+
"""Generate realistic F1 telemetry data"""
|
22 |
+
np.random.seed(42)
|
23 |
+
|
24 |
+
# Base parameters
|
25 |
+
lap_time = np.random.normal(90, 5, num_samples) # seconds
|
26 |
+
speed = np.random.normal(200, 30, num_samples) # km/h
|
27 |
+
throttle = np.random.uniform(0, 100, num_samples) # %
|
28 |
+
brake_pressure = np.random.uniform(0, 100, num_samples) # %
|
29 |
+
tire_temp = np.random.normal(80, 15, num_samples) # °C
|
30 |
+
engine_temp = np.random.normal(95, 10, num_samples) # °C
|
31 |
+
|
32 |
+
# Introduce some realistic correlations
|
33 |
+
speed = np.clip(speed + throttle * 0.5 - brake_pressure * 0.3, 50, 300)
|
34 |
+
tire_temp = np.clip(tire_temp + speed * 0.1 + throttle * 0.2, 40, 120)
|
35 |
+
engine_temp = np.clip(engine_temp + throttle * 0.15 + speed * 0.05, 70, 130)
|
36 |
+
|
37 |
+
# Lap number for degradation modeling
|
38 |
+
lap_number = np.random.randint(1, 60, num_samples)
|
39 |
+
|
40 |
+
# Tire degradation (performance decreases over laps)
|
41 |
+
tire_degradation = 100 - (lap_number * 0.8 + np.random.normal(0, 2, num_samples))
|
42 |
+
tire_degradation = np.clip(tire_degradation, 60, 100)
|
43 |
+
|
44 |
+
# Fuel consumption (decreases with laps)
|
45 |
+
fuel_remaining = 100 - (lap_number * 1.5 + np.random.normal(0, 3, num_samples))
|
46 |
+
fuel_remaining = np.clip(fuel_remaining, 0, 100)
|
47 |
+
|
48 |
+
# Add some anomalies
|
49 |
+
anomaly_indices = np.random.choice(num_samples, size=int(num_samples * 0.05), replace=False)
|
50 |
+
speed[anomaly_indices] = np.random.uniform(20, 50, len(anomaly_indices)) # Very slow speeds
|
51 |
+
tire_temp[anomaly_indices] = np.random.uniform(130, 150, len(anomaly_indices)) # Overheating
|
52 |
+
|
53 |
+
return pd.DataFrame({
|
54 |
+
'lap_time': lap_time,
|
55 |
+
'speed': speed,
|
56 |
+
'throttle': throttle,
|
57 |
+
'brake_pressure': brake_pressure,
|
58 |
+
'tire_temp': tire_temp,
|
59 |
+
'engine_temp': engine_temp,
|
60 |
+
'lap_number': lap_number,
|
61 |
+
'tire_degradation': tire_degradation,
|
62 |
+
'fuel_remaining': fuel_remaining
|
63 |
+
})
|
64 |
+
|
65 |
+
def detect_anomalies(self, data):
|
66 |
+
"""Detect anomalies in telemetry data"""
|
67 |
+
features = ['speed', 'throttle', 'brake_pressure', 'tire_temp', 'engine_temp']
|
68 |
+
X = data[features]
|
69 |
+
|
70 |
+
# Fit and predict anomalies
|
71 |
+
anomalies = self.anomaly_detector.fit_predict(X)
|
72 |
+
data['anomaly'] = anomalies
|
73 |
+
|
74 |
+
return data
|
75 |
+
|
76 |
+
def train_predictive_models(self, data):
|
77 |
+
"""Train tire degradation and fuel consumption models"""
|
78 |
+
# Prepare features for prediction
|
79 |
+
features = ['lap_number', 'speed', 'throttle', 'tire_temp', 'engine_temp']
|
80 |
+
X = data[features]
|
81 |
+
|
82 |
+
# Train tire degradation model
|
83 |
+
y_tire = data['tire_degradation']
|
84 |
+
self.tire_model.fit(X, y_tire)
|
85 |
+
|
86 |
+
# Train fuel consumption model
|
87 |
+
y_fuel = data['fuel_remaining']
|
88 |
+
self.fuel_model.fit(X, y_fuel)
|
89 |
+
|
90 |
+
self.is_trained = True
|
91 |
+
|
92 |
+
# Calculate model performance
|
93 |
+
tire_pred = self.tire_model.predict(X)
|
94 |
+
fuel_pred = self.fuel_model.predict(X)
|
95 |
+
|
96 |
+
tire_r2 = r2_score(y_tire, tire_pred)
|
97 |
+
fuel_r2 = r2_score(y_fuel, fuel_pred)
|
98 |
+
|
99 |
+
return tire_r2, fuel_r2
|
100 |
+
|
101 |
+
def predict_performance(self, lap_number, speed, throttle, tire_temp, engine_temp):
|
102 |
+
"""Predict tire degradation and fuel consumption"""
|
103 |
+
if not self.is_trained:
|
104 |
+
return "Model not trained yet!", ""
|
105 |
+
|
106 |
+
features = np.array([[lap_number, speed, throttle, tire_temp, engine_temp]])
|
107 |
+
|
108 |
+
tire_pred = self.tire_model.predict(features)[0]
|
109 |
+
fuel_pred = self.fuel_model.predict(features)[0]
|
110 |
+
|
111 |
+
return f"Predicted Tire Performance: {tire_pred:.1f}%", f"Predicted Fuel Remaining: {fuel_pred:.1f}%"
|
112 |
+
|
113 |
+
def create_visualizations(self, data):
|
114 |
+
"""Create telemetry visualizations"""
|
115 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
116 |
+
|
117 |
+
# Speed vs Lap Time
|
118 |
+
normal_data = data[data['anomaly'] == 1]
|
119 |
+
anomaly_data = data[data['anomaly'] == -1]
|
120 |
+
|
121 |
+
axes[0, 0].scatter(normal_data['speed'], normal_data['lap_time'],
|
122 |
+
alpha=0.6, label='Normal', color='blue')
|
123 |
+
axes[0, 0].scatter(anomaly_data['speed'], anomaly_data['lap_time'],
|
124 |
+
alpha=0.8, label='Anomaly', color='red')
|
125 |
+
axes[0, 0].set_xlabel('Speed (km/h)')
|
126 |
+
axes[0, 0].set_ylabel('Lap Time (s)')
|
127 |
+
axes[0, 0].set_title('Speed vs Lap Time (Anomaly Detection)')
|
128 |
+
axes[0, 0].legend()
|
129 |
+
axes[0, 0].grid(True, alpha=0.3)
|
130 |
+
|
131 |
+
# Tire Temperature Distribution
|
132 |
+
axes[0, 1].hist(normal_data['tire_temp'], bins=30, alpha=0.7, label='Normal', color='blue')
|
133 |
+
axes[0, 1].hist(anomaly_data['tire_temp'], bins=30, alpha=0.7, label='Anomaly', color='red')
|
134 |
+
axes[0, 1].set_xlabel('Tire Temperature (°C)')
|
135 |
+
axes[0, 1].set_ylabel('Frequency')
|
136 |
+
axes[0, 1].set_title('Tire Temperature Distribution')
|
137 |
+
axes[0, 1].legend()
|
138 |
+
axes[0, 1].grid(True, alpha=0.3)
|
139 |
+
|
140 |
+
# Tire Degradation over Laps
|
141 |
+
axes[1, 0].scatter(data['lap_number'], data['tire_degradation'], alpha=0.6, color='green')
|
142 |
+
axes[1, 0].set_xlabel('Lap Number')
|
143 |
+
axes[1, 0].set_ylabel('Tire Performance (%)')
|
144 |
+
axes[1, 0].set_title('Tire Degradation Over Race')
|
145 |
+
axes[1, 0].grid(True, alpha=0.3)
|
146 |
+
|
147 |
+
# Fuel Consumption
|
148 |
+
axes[1, 1].scatter(data['lap_number'], data['fuel_remaining'], alpha=0.6, color='orange')
|
149 |
+
axes[1, 1].set_xlabel('Lap Number')
|
150 |
+
axes[1, 1].set_ylabel('Fuel Remaining (%)')
|
151 |
+
axes[1, 1].set_title('Fuel Consumption Over Race')
|
152 |
+
axes[1, 1].grid(True, alpha=0.3)
|
153 |
+
|
154 |
+
plt.tight_layout()
|
155 |
+
return fig
|
156 |
+
|
157 |
+
# Initialize the analyzer
|
158 |
+
analyzer = F1TelemetryAnalyzer()
|
159 |
+
|
160 |
+
def analyze_telemetry():
|
161 |
+
"""Main function to run telemetry analysis"""
|
162 |
+
# Generate sample data
|
163 |
+
data = analyzer.generate_sample_data(1000)
|
164 |
+
|
165 |
+
# Detect anomalies
|
166 |
+
data = analyzer.detect_anomalies(data)
|
167 |
+
|
168 |
+
# Train predictive models
|
169 |
+
tire_r2, fuel_r2 = analyzer.train_predictive_models(data)
|
170 |
+
|
171 |
+
# Create visualizations
|
172 |
+
fig = analyzer.create_visualizations(data)
|
173 |
+
|
174 |
+
# Generate summary report
|
175 |
+
total_samples = len(data)
|
176 |
+
anomalies_detected = len(data[data['anomaly'] == -1])
|
177 |
+
anomaly_percentage = (anomalies_detected / total_samples) * 100
|
178 |
+
|
179 |
+
report = f"""
|
180 |
+
## F1 Telemetry Analysis Report
|
181 |
+
|
182 |
+
**Data Summary:**
|
183 |
+
- Total samples analyzed: {total_samples}
|
184 |
+
- Anomalies detected: {anomalies_detected} ({anomaly_percentage:.1f}%)
|
185 |
+
|
186 |
+
**Model Performance:**
|
187 |
+
- Tire Degradation Model R²: {tire_r2:.3f}
|
188 |
+
- Fuel Consumption Model R²: {fuel_r2:.3f}
|
189 |
+
|
190 |
+
**Key Insights:**
|
191 |
+
- Average lap time: {data['lap_time'].mean():.1f} seconds
|
192 |
+
- Average speed: {data['speed'].mean():.1f} km/h
|
193 |
+
- Maximum tire temperature: {data['tire_temp'].max():.1f}°C
|
194 |
+
- Minimum tire performance: {data['tire_degradation'].min():.1f}%
|
195 |
+
|
196 |
+
**Anomaly Analysis:**
|
197 |
+
- Anomalies primarily detected in: Low speed conditions and high tire temperatures
|
198 |
+
- Recommended action: Investigate cooling systems and potential mechanical issues
|
199 |
+
"""
|
200 |
+
|
201 |
+
return fig, report
|
202 |
+
|
203 |
+
def predict_telemetry(lap_number, speed, throttle, tire_temp, engine_temp):
|
204 |
+
"""Predict tire and fuel performance"""
|
205 |
+
tire_pred, fuel_pred = analyzer.predict_performance(lap_number, speed, throttle, tire_temp, engine_temp)
|
206 |
+
return tire_pred, fuel_pred
|
207 |
+
|
208 |
+
# Create Gradio interface
|
209 |
+
with gr.Blocks(title="F1 Telemetry Data Analyzer", theme=gr.themes.Soft()) as demo:
|
210 |
+
gr.Markdown("# 🏎️ F1 Telemetry Data Analyzer")
|
211 |
+
gr.Markdown("Advanced AI-powered analysis of Formula 1 telemetry data with anomaly detection and predictive modeling.")
|
212 |
+
|
213 |
+
with gr.Tab("📊 Data Analysis"):
|
214 |
+
gr.Markdown("### Generate and analyze telemetry data")
|
215 |
+
analyze_btn = gr.Button("🔍 Analyze Telemetry Data", variant="primary")
|
216 |
+
|
217 |
+
with gr.Row():
|
218 |
+
with gr.Column(scale=2):
|
219 |
+
plot_output = gr.Plot(label="Telemetry Visualizations")
|
220 |
+
with gr.Column(scale=1):
|
221 |
+
report_output = gr.Markdown(label="Analysis Report")
|
222 |
+
|
223 |
+
analyze_btn.click(
|
224 |
+
analyze_telemetry,
|
225 |
+
outputs=[plot_output, report_output]
|
226 |
+
)
|
227 |
+
|
228 |
+
with gr.Tab("🔮 Performance Prediction"):
|
229 |
+
gr.Markdown("### Predict tire performance and fuel consumption")
|
230 |
+
gr.Markdown("*Note: Run the analysis first to train the models*")
|
231 |
+
|
232 |
+
with gr.Row():
|
233 |
+
with gr.Column():
|
234 |
+
lap_input = gr.Slider(1, 60, value=10, label="Lap Number")
|
235 |
+
speed_input = gr.Slider(50, 300, value=200, label="Speed (km/h)")
|
236 |
+
throttle_input = gr.Slider(0, 100, value=75, label="Throttle (%)")
|
237 |
+
tire_temp_input = gr.Slider(40, 120, value=80, label="Tire Temperature (°C)")
|
238 |
+
engine_temp_input = gr.Slider(70, 130, value=95, label="Engine Temperature (°C)")
|
239 |
+
|
240 |
+
predict_btn = gr.Button("🎯 Predict Performance", variant="secondary")
|
241 |
+
|
242 |
+
with gr.Column():
|
243 |
+
tire_pred_output = gr.Textbox(label="Tire Performance Prediction")
|
244 |
+
fuel_pred_output = gr.Textbox(label="Fuel Consumption Prediction")
|
245 |
+
|
246 |
+
predict_btn.click(
|
247 |
+
predict_telemetry,
|
248 |
+
inputs=[lap_input, speed_input, throttle_input, tire_temp_input, engine_temp_input],
|
249 |
+
outputs=[tire_pred_output, fuel_pred_output]
|
250 |
+
)
|
251 |
+
|
252 |
+
with gr.Tab("ℹ️ About"):
|
253 |
+
gr.Markdown("""
|
254 |
+
## About This Tool
|
255 |
+
|
256 |
+
This F1 Telemetry Data Analyzer demonstrates advanced AI techniques used in Formula 1 racing:
|
257 |
+
|
258 |
+
**🔍 Anomaly Detection:**
|
259 |
+
- Uses Isolation Forest algorithm to detect unusual patterns in telemetry data
|
260 |
+
- Identifies potential mechanical issues or performance anomalies
|
261 |
+
- Helps engineers spot problems before they become critical
|
262 |
+
|
263 |
+
**📈 Predictive Modeling:**
|
264 |
+
- Machine learning models predict tire degradation and fuel consumption
|
265 |
+
- Based on real-time telemetry inputs (speed, throttle, temperatures)
|
266 |
+
- Enables strategic decision-making during races
|
267 |
+
|
268 |
+
**🎯 Key Features:**
|
269 |
+
- Real-time telemetry processing simulation
|
270 |
+
- Advanced visualization of racing data
|
271 |
+
- Performance prediction for race strategy
|
272 |
+
- Anomaly detection for preventive maintenance
|
273 |
+
|
274 |
+
**🏗️ Technical Stack:**
|
275 |
+
- Python with scikit-learn for ML models
|
276 |
+
- Isolation Forest for anomaly detection
|
277 |
+
- Linear regression for performance prediction
|
278 |
+
- Matplotlib for advanced visualizations
|
279 |
+
- Gradio for interactive web interface
|
280 |
+
""")
|
281 |
+
|
282 |
+
if __name__ == "__main__":
|
283 |
+
demo.launch()
|