File size: 3,530 Bytes
1b9e6e3
 
 
ea41834
 
 
 
 
 
 
 
 
 
 
 
421af5a
e972600
 
421af5a
2bfec82
421af5a
 
 
 
f91d6af
 
 
 
 
 
 
8b09c72
2bfec82
421af5a
 
 
 
dbaa4dc
421af5a
 
846f316
421af5a
360ff2a
 
 
072db12
96da2bc
 
072db12
 
96da2bc
1b9e6e3
e972600
421af5a
1b9e6e3
ea41834
ff87670
 
1b9e6e3
ea41834
 
 
 
 
 
1b9e6e3
e972600
1b9e6e3
ea41834
 
1b9e6e3
ea41834
1b9e6e3
 
 
ea41834
2bfec82
7464f51
ea41834
2bfec82
b9dcc6f
ff87670
 
 
 
 
 
 
 
ea41834
ff87670
 
ea41834
 
2bfec82
1b9e6e3
 
ea41834
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
from huggingface_hub import InferenceClient

# 💡 Dynamic prompt builder based on CEFR level
def level_to_prompt(level):
    return {
        "A1": "You are a friendly French tutor. Speak mostly in English, use simple French, and explain everything.",
        "A2": "You are a patient French tutor. Use short French phrases and explain them in English.",
        "B1": "You are a helpful French tutor. Speak mostly in French but clarify in English when needed.",
        "B2": "You are a French tutor. Speak primarily in French with rare English support.",
        "C1": "You are a native French tutor. Speak entirely in French, clearly and professionally.",
        "C2": "You are a native French professor. Speak in rich, complex French. Avoid English."
    }.get(level, "You are a helpful French tutor.")

# Custom background CSS
css = """
@import url('https://fonts.googleapis.com/css2?family=Noto+Sans+JP&family=Playfair+Display&display=swap');

body {
  background-image: url('https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/wuyd5UYTh9jPrMJGmV9yC.jpeg');
  background-size: cover;
  background-position: center;
  background-repeat: no-repeat;
}
.gradio-container {
  display: flex;
  flex-direction: column;
  justify-content: center;
  min-height: 100vh;
  padding-top: 2rem;
  padding-bottom: 2rem;
}  
#chat-panel {
  background-color: rgba(255, 255, 255, 0.85);
  padding: 2rem;
  border-radius: 12px;
  max-width: 700px;
  height: 70vh;
  margin: auto;
  box-shadow: 0 0 12px rgba(0, 0, 0, 0.3);
  overflow-y: auto;
}
.gradio-container .chatbot h1 {
  color: var(--custom-title-color) !important;
  font-family: 'Playfair Display', serif !important;
  font-size: 5rem !important;
  font-weight: bold !important;
  text-align: center !important;
  margin-bottom: 1.5rem !important;
  width: 100%;
}
"""

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Chat logic
def respond(message, history, level, max_tokens, temperature, top_p):
    system_message = level_to_prompt(level)
    messages = [{"role": "system", "content": system_message}]
    
    for user, bot in history:
        if user:
            messages.append({"role": "user", "content": user})
        if bot:
            messages.append({"role": "assistant", "content": bot})
    messages.append({"role": "user", "content": message})

    response = ""
    for msg in client.chat_completion(
        messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
    ):
        token = msg.choices[0].delta.content
        response += token
        yield response

# UI layout
with gr.Blocks(css=css) as demo:
    gr.Markdown("French Tutor", elem_id="custom-title")

    with gr.Column(elem_id="chat-panel"):
        with gr.Accordion("⚙️ Advanced Settings", open=False):
            level = gr.Dropdown(
                choices=["A1", "A2", "B1", "B2", "C1", "C2"],
                value="A1",
                label="Your French Level (CEFR)"
            )
            max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Response Length")
            temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Creativity")
            top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Dynamic Text")
        
        gr.ChatInterface(
            fn=respond,
            additional_inputs=[level, max_tokens, temperature, top_p],
            type="messages"  # ✅ prevents deprecation warning
        )

if __name__ == "__main__":
    demo.launch()