French-Tutor / app.py
CCockrum's picture
Update app.py
c2f81a6 verified
raw
history blame
7.34 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
# Get HF token from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize client with proper error handling
def get_client():
if HF_TOKEN:
try:
# Try with the preferred model first
return InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=HF_TOKEN)
except Exception as e:
print(f"Failed to initialize zephyr model: {e}")
# Fallback to mistral with token
try:
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.1", token=HF_TOKEN)
except Exception as e2:
print(f"Failed to initialize mistral model: {e2}")
return None
else:
print("No HF_TOKEN found. Please set your Hugging Face token.")
return None
client = get_client()
# Dynamic prompt builder based on CEFR level
def level_to_prompt(level):
return {
"A1": "You are a friendly French tutor. Speak mostly in English, use simple French, and explain everything.",
"A2": "You are a patient French tutor. Use short French phrases and explain them in English.",
"B1": "You are a helpful French tutor. Speak mostly in French but clarify in English when needed.",
"B2": "You are a French tutor. Speak primarily in French with rare English support.",
"C1": "You are a native French tutor. Speak entirely in French, clearly and professionally.",
"C2": "You are a native French professor. Speak in rich, complex French. Avoid English."
}.get(level, "You are a helpful French tutor.")
# Custom background CSS
css = """
@import url('https://fonts.googleapis.com/css2?family=Noto+Sans+JP&family=Playfair+Display&display=swap');
body {
background-image: url('https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/wuyd5UYTh9jPrMJGmV9yC.jpeg');
background-size: cover;
background-position: center;
background-repeat: no-repeat;
}
.gradio-container {
display: flex;
flex-direction: column;
justify-content: center;
min-height: 100vh;
padding-top: 2rem;
padding-bottom: 2rem;
}
#chat-panel {
background-color: rgba(255, 255, 255, 0.85);
padding: 2rem;
border-radius: 12px;
max-width: 700px;
height: 70vh;
margin: auto;
box-shadow: 0 0 12px rgba(0, 0, 0, 0.3);
overflow-y: auto;
}
.gradio-container .chatbot h1 {
color: var(--custom-title-color) !important;
font-family: 'Playfair Display', serif !important;
font-size: 5rem !important;
font-weight: bold !important;
text-align: center !important;
margin-bottom: 1.5rem !important;
width: 100%;
}
"""
# Chat logic with proper error handling
def respond(message, history, level, max_tokens, temperature, top_p):
# Check if client is available
if client is None:
yield "❌ Désolé! The AI service is not available. Please check your Hugging Face token configuration."
return
system_message = level_to_prompt(level)
# Generate response
response = ""
try:
# Create a proper prompt format for instruction-following models
prompt = f"<|system|>\n{system_message}\n\n"
# Add conversation history
if history:
for turn in history:
if isinstance(turn, dict):
if turn.get("role") == "user":
prompt += f"<|user|>\n{turn['content']}\n\n"
elif turn.get("role") == "assistant":
prompt += f"<|assistant|>\n{turn['content']}\n\n"
else:
# Handle tuple format (user, assistant)
user_msg, bot_msg = turn
if user_msg:
prompt += f"<|user|>\n{user_msg}\n\n"
if bot_msg:
prompt += f"<|assistant|>\n{bot_msg}\n\n"
# Add current user message
prompt += f"<|user|>\n{message}\n\n<|assistant|>\n"
# Generate response with streaming
for token in client.text_generation(
prompt,
max_new_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
do_sample=True,
return_full_text=False,
stop_sequences=["<|user|>", "<|system|>"] # Stop if model tries to continue conversation
):
if token: # Handle None tokens
# Clean up any unwanted tokens
token = token.replace("<|user|>", "").replace("<|system|>", "").replace("<|assistant|>", "")
if token.strip(): # Only add non-empty tokens
response += token
yield response
except Exception as e:
error_msg = str(e)
print(f"Error in chat completion: {e}")
if "401" in error_msg or "Unauthorized" in error_msg:
yield "🔑 Authentication Error: Please check your Hugging Face token. Make sure it's valid and has the correct permissions."
elif "429" in error_msg or "rate limit" in error_msg.lower():
yield "⏰ Rate limit exceeded. Please wait a moment before trying again."
elif "503" in error_msg or "Service Unavailable" in error_msg:
yield "🔧 The AI service is temporarily unavailable. Please try again later."
else:
yield f"❌ Désolé! There was an error: {error_msg}"
# UI layout
with gr.Blocks(css=css, title="French Tutor") as demo:
gr.Markdown("# 🇫🇷 French Tutor", elem_id="custom-title")
# Add status indicator
if client is None:
gr.Markdown("⚠️ **Warning**: No Hugging Face token found. Please set your HF_TOKEN environment variable.")
else:
gr.Markdown("✅ **Status**: Connected to AI service")
with gr.Column(elem_id="chat-panel"):
gr.Markdown("""
with gr.Accordion("⚙️ Advanced Settings", open=False):
level = gr.Dropdown(
choices=["A1", "A2", "B1", "B2", "C1", "C2"],
value="A1",
label="Your French Level (CEFR)",
info="Choose your current French proficiency level"
)
max_tokens = gr.Slider(
1, 2048,
value=512,
step=1,
label="Response Length",
info="Maximum number of tokens in the response"
)
temperature = gr.Slider(
0.1, 2.0,
value=0.7,
step=0.1,
label="Creativity",
info="Higher values make responses more creative"
)
top_p = gr.Slider(
0.1, 1.0,
value=0.95,
step=0.05,
label="Dynamic Text",
info="Controls text diversity"
)
gr.ChatInterface(
fn=respond,
additional_inputs=[level, max_tokens, temperature, top_p],
type="messages",
title="Chat with your French Tutor",
description="Ask questions, practice conversation, or get help with French grammar!"
)
""")
if __name__ == "__main__":
demo.launch()