import gradio as gr from huggingface_hub import InferenceClient import os # Get HF token from environment variable HF_TOKEN = os.getenv("HF_TOKEN") # Initialize client with proper error handling def get_client(): if HF_TOKEN: try: # Try with the preferred model first return InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=HF_TOKEN) except Exception as e: print(f"Failed to initialize zephyr model: {e}") # Fallback to mistral with token try: return InferenceClient("mistralai/Mistral-7B-Instruct-v0.1", token=HF_TOKEN) except Exception as e2: print(f"Failed to initialize mistral model: {e2}") return None else: print("No HF_TOKEN found. Please set your Hugging Face token.") return None client = get_client() # Dynamic prompt builder based on CEFR level def level_to_prompt(level): return { "A1": "You are a friendly French tutor. Speak mostly in English, use simple French, and explain everything.", "A2": "You are a patient French tutor. Use short French phrases and explain them in English.", "B1": "You are a helpful French tutor. Speak mostly in French but clarify in English when needed.", "B2": "You are a French tutor. Speak primarily in French with rare English support.", "C1": "You are a native French tutor. Speak entirely in French, clearly and professionally.", "C2": "You are a native French professor. Speak in rich, complex French. Avoid English." }.get(level, "You are a helpful French tutor.") # Custom background CSS css = """ @import url('https://fonts.googleapis.com/css2?family=Noto+Sans+JP&family=Playfair+Display&display=swap'); body { background-image: url('https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/wuyd5UYTh9jPrMJGmV9yC.jpeg'); background-size: cover; background-position: center; background-repeat: no-repeat; } .gradio-container { display: flex; flex-direction: column; justify-content: center; min-height: 100vh; padding-top: 2rem; padding-bottom: 2rem; } #chat-panel { background-color: rgba(255, 255, 255, 0.85); padding: 2rem; border-radius: 12px; max-width: 700px; height: 70vh; margin: auto; box-shadow: 0 0 12px rgba(0, 0, 0, 0.3); overflow-y: auto; } .gradio-container .chatbot h1 { color: var(--custom-title-color) !important; font-family: 'Playfair Display', serif !important; font-size: 5rem !important; font-weight: bold !important; text-align: center !important; margin-bottom: 1.5rem !important; width: 100%; } """ # Chat logic with proper error handling def respond(message, history, level, max_tokens, temperature, top_p): # Check if client is available if client is None: yield "❌ Désolé! The AI service is not available. Please check your Hugging Face token configuration." return system_message = level_to_prompt(level) # Generate response response = "" try: # Create a proper prompt format for instruction-following models prompt = f"<|system|>\n{system_message}\n\n" # Add conversation history if history: for turn in history: if isinstance(turn, dict): if turn.get("role") == "user": prompt += f"<|user|>\n{turn['content']}\n\n" elif turn.get("role") == "assistant": prompt += f"<|assistant|>\n{turn['content']}\n\n" else: # Handle tuple format (user, assistant) user_msg, bot_msg = turn if user_msg: prompt += f"<|user|>\n{user_msg}\n\n" if bot_msg: prompt += f"<|assistant|>\n{bot_msg}\n\n" # Add current user message prompt += f"<|user|>\n{message}\n\n<|assistant|>\n" # Generate response with streaming for token in client.text_generation( prompt, max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, do_sample=True, return_full_text=False, stop_sequences=["<|user|>", "<|system|>"] # Stop if model tries to continue conversation ): if token: # Handle None tokens # Clean up any unwanted tokens token = token.replace("<|user|>", "").replace("<|system|>", "").replace("<|assistant|>", "") if token.strip(): # Only add non-empty tokens response += token yield response except Exception as e: error_msg = str(e) print(f"Error in chat completion: {e}") if "401" in error_msg or "Unauthorized" in error_msg: yield "🔑 Authentication Error: Please check your Hugging Face token. Make sure it's valid and has the correct permissions." elif "429" in error_msg or "rate limit" in error_msg.lower(): yield "⏰ Rate limit exceeded. Please wait a moment before trying again." elif "503" in error_msg or "Service Unavailable" in error_msg: yield "🔧 The AI service is temporarily unavailable. Please try again later." else: yield f"❌ Désolé! There was an error: {error_msg}" # UI layout with gr.Blocks(css=css, title="French Tutor") as demo: gr.Markdown("# 🇫🇷 French Tutor", elem_id="custom-title") # Add status indicator if client is None: gr.Markdown("⚠️ **Warning**: No Hugging Face token found. Please set your HF_TOKEN environment variable.") else: gr.Markdown("✅ **Status**: Connected to AI service") with gr.Column(elem_id="chat-panel"): gr.Markdown(""" with gr.Accordion("⚙️ Advanced Settings", open=False): level = gr.Dropdown( choices=["A1", "A2", "B1", "B2", "C1", "C2"], value="A1", label="Your French Level (CEFR)", info="Choose your current French proficiency level" ) max_tokens = gr.Slider( 1, 2048, value=512, step=1, label="Response Length", info="Maximum number of tokens in the response" ) temperature = gr.Slider( 0.1, 2.0, value=0.7, step=0.1, label="Creativity", info="Higher values make responses more creative" ) top_p = gr.Slider( 0.1, 1.0, value=0.95, step=0.05, label="Dynamic Text", info="Controls text diversity" ) gr.ChatInterface( fn=respond, additional_inputs=[level, max_tokens, temperature, top_p], type="messages", title="Chat with your French Tutor", description="Ask questions, practice conversation, or get help with French grammar!" ) if __name__ == "__main__": demo.launch()