import gradio as gr from huggingface_hub import InferenceClient import os client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=os.getenv("HF_TOKEN")) # 💡 Dynamic prompt builder based on CEFR level def level_to_prompt(level): return { "A1": "You are a friendly French tutor. Speak mostly in English, use simple French, and explain everything.", "A2": "You are a patient French tutor. Use short French phrases and explain them in English.", "B1": "You are a helpful French tutor. Speak mostly in French but clarify in English when needed.", "B2": "You are a French tutor. Speak primarily in French with rare English support.", "C1": "You are a native French tutor. Speak entirely in French, clearly and professionally.", "C2": "You are a native French professor. Speak in rich, complex French. Avoid English." }.get(level, "You are a helpful French tutor.") # Custom background CSS css = """ @import url('https://fonts.googleapis.com/css2?family=Noto+Sans+JP&family=Playfair+Display&display=swap'); body { background-image: url('https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/wuyd5UYTh9jPrMJGmV9yC.jpeg'); background-size: cover; background-position: center; background-repeat: no-repeat; } .gradio-container { display: flex; flex-direction: column; justify-content: center; min-height: 100vh; padding-top: 2rem; padding-bottom: 2rem; } #chat-panel { background-color: rgba(255, 255, 255, 0.85); padding: 2rem; border-radius: 12px; max-width: 700px; height: 70vh; margin: auto; box-shadow: 0 0 12px rgba(0, 0, 0, 0.3); overflow-y: auto; } .gradio-container .chatbot h1 { color: var(--custom-title-color) !important; font-family: 'Playfair Display', serif !important; font-size: 5rem !important; font-weight: bold !important; text-align: center !important; margin-bottom: 1.5rem !important; width: 100%; } """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Chat logic def respond(message, history, level, max_tokens, temperature, top_p): system_message = level_to_prompt(level) messages = [{"role": "system", "content": system_message}] # Handle history based on its format if history and isinstance(history[0], dict): # New format (messages with role/content) messages.extend(history) else: # Old format (tuples) for user, bot in history: if user: messages.append({"role": "user", "content": user}) if bot: messages.append({"role": "assistant", "content": bot}) # Add current message messages.append({"role": "user", "content": message}) # Generate response response = "" try: for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p ): token = msg.choices[0].delta.content if token is not None: # Handle None tokens response += token yield response except Exception as e: print(f"Error in chat completion: {e}") yield f"Désolé! There was an error: {str(e)}" # UI layout with gr.Blocks(css=css) as demo: gr.Markdown("French Tutor", elem_id="custom-title") with gr.Column(elem_id="chat-panel"): with gr.Accordion("⚙️ Advanced Settings", open=False): level = gr.Dropdown( choices=["A1", "A2", "B1", "B2", "C1", "C2"], value="A1", label="Your French Level (CEFR)" ) max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Response Length") temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Creativity") top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Dynamic Text") gr.ChatInterface( fn=respond, additional_inputs=[level, max_tokens, temperature, top_p], type="messages" # ✅ prevents deprecation warning ) if __name__ == "__main__": demo.launch()