import gradio as gr from huggingface_hub import InferenceClient # Custom background CSS with semi-transparent panel css = """ body { background-image: url('https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/wuyd5UYTh9jPrMJGmV9yC.jpeg'); background-size: cover; background-position: center; background-repeat: no-repeat; } .gradio-container { display: flex; flex-direction: column; justify-content: center; align-items: center; min-height: 100vh; padding-top: 2rem; padding-bottom: 2rem; } #custom-title { color: #d63384; font-family: 'Playfair Display', serif; font-size: 2.5rem; font-weight: bold; text-align: center; margin-bottom: 20px; } #chat-panel { background-color: rgba(255, 255, 255, 0.85); padding: 2rem; border-radius: 12px; width: 100%; max-width: 700px; height: 70vh; box-shadow: 0 0 12px rgba(0, 0, 0, 0.3); overflow-y: auto; } """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history): messages = [{"role": "system", "content": "You are a helpful French tutor."}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, stream=True, ): token = message.choices[0].delta.content response += token yield response with gr.Blocks(css=css) as demo: with gr.Column(elem_id="chat-panel"): gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="Adjust your settings.", label=""), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Response Length"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Creativity"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Dynamic Text") ] if __name__ == "__main__": demo.launch()