import gradio as gr from huggingface_hub import InferenceClient # Custom background CSS with styled title and panel css = """ @import url('https://fonts.googleapis.com/css2?family=Noto+Sans+JP&family=Playfair+Display&display=swap'); body { background-image: url('https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/GdA9eNQKjOQjE6q47km3l.jpeg'); background-size: cover; background-position: center; background-repeat: no-repeat; font-family: 'Noto Sans JP', sans-serif; } #chat-panel { background-color: rgba(255, 255, 255, 0.85); padding: 2rem; border-radius: 12px; max-width: 700px; height: 90vh; margin: auto; box-shadow: 0 0 12px rgba(0, 0, 0, 0.3); overflow-y: auto; } #chat-title { color: #2c3e50; font-family: 'Noto Sans', serif; font-size: 1.8rem; font-weight: bold; text-align: center; margin-bottom: 1rem; } """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response with gr.Blocks(css=css) as demo: with gr.Column(elem_id="chat-panel"): gr.Markdown("## 🇯🇵 Japanese Tutor Chatbot", elem_id="chat-title") with gr.Accordion("⚙️ Settings", open=False): system_message = gr.Textbox( value="You are an expert Japanese tutor. Help users understand Japanese grammar, vocabulary, sentence structure, particles, and kanji readings. Reply clearly in English unless the user specifies otherwise.", label="System message" ) max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") gr.ChatInterface( respond, additional_inputs=[system_message, max_tokens, temperature, top_p] ) if __name__ == "__main__": demo.launch()