CCockrum's picture
Update app.py
ac76af4 verified
raw
history blame
6.94 kB
# MetaDiscovery Agent - LOC API with Enhanced Completeness and Quality Analysis
import requests
import pandas as pd
import numpy as np
import streamlit as st
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Custom CSS for white background, styled sidebar, banner, and dark grey font
st.markdown("""
<style>
.main {
background-color: white !important;
color: #333333 !important;
}
.block-container {
background-color: white !important;
color: #333333 !important;
}
section[data-testid="stSidebar"] > div:first-child {
background-color: #f8f9fa !important;
padding: 1rem;
border-radius: 0.5rem;
color: #333333 !important;
}
.stMarkdown, .stTextInput, .stDataFrame {
color: #333333 !important;
}
img.banner {
width: 100%;
border-radius: 12px;
margin-bottom: 1rem;
}
</style>
""", unsafe_allow_html=True)
# Optional: Add a banner image (replace with your image URL)
st.markdown('<img src="https://www.loc.gov/static/images/home/home-header.jpg" class="banner">', unsafe_allow_html=True)
# Streamlit app header
st.title("MetaDiscovery Agent for Library of Congress Collections")
st.markdown("""
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
""")
# Updated collection URLs using the correct LOC API format
collections = {
"American Revolutionary War Maps": "american+revolutionary+war+maps",
"Civil War Maps": "civil+war+maps",
"Women's Suffrage": "women+suffrage",
"World War I Posters": "world+war+posters"
}
# Sidebar for selecting collection
st.sidebar.markdown("## Settings")
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()))
search_query = collections[selected]
# Use the main search endpoint (most reliable)
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
st.sidebar.write(f"Selected Collection: {selected}")
st.sidebar.write(f"API URL: {collection_url}")
# Fetch data from LOC API with spoofed User-Agent header
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36"
}
try:
response = requests.get(collection_url, headers=headers)
response.raise_for_status()
data = response.json()
if "results" in data:
records = data.get("results", [])
elif "items" in data:
records = data.get("items", [])
else:
records = []
st.error("Unexpected API response structure. No records found.")
st.write(f"Retrieved {len(records)} records")
except requests.exceptions.RequestException as e:
st.error(f"API Connection Error: {e}")
records = []
except ValueError:
st.error("Failed to parse API response as JSON")
records = []
# Extract selected metadata fields
items = []
for record in records:
if isinstance(record, dict):
description = record.get("description", "")
if isinstance(description, list):
description = " ".join([str(d) for d in description])
item = {
"id": record.get("id", ""),
"title": record.get("title", ""),
"date": record.get("date", ""),
"subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
"creator": record.get("creator", ""),
"description": description
}
if not item["title"] and "item" in record:
item["title"] = record.get("item", {}).get("title", "")
if not item["date"] and "item" in record:
item["date"] = record.get("item", {}).get("date", "")
items.append(item)
metadata_df = pd.DataFrame(items)
# Utility functions for deeper metadata quality analysis
def is_incomplete(value):
return pd.isna(value) or value in ["", "N/A", "null", None]
def is_valid_date(value):
try:
pd.to_datetime(value)
return True
except:
return False
if not metadata_df.empty:
st.subheader("πŸ“¦ Retrieved Metadata Sample")
st.dataframe(metadata_df.head())
# Metadata completeness analysis (enhanced)
st.subheader("🧠 Metadata Completeness Analysis")
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
st.plotly_chart(fig)
# Identify incomplete records
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
incomplete_records = metadata_df[incomplete_mask]
st.subheader("⚠️ Records with Incomplete Metadata")
if not incomplete_records.empty:
st.dataframe(incomplete_records.astype(str))
else:
st.success("All metadata fields are complete in this collection!")
st.subheader("πŸ“Œ Identifiers of Items Needing Metadata Updates")
if not incomplete_records.empty:
st.write(incomplete_records[['id', 'title']])
else:
st.success("All records are complete!")
st.subheader("✨ Suggested Metadata Enhancements")
filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
if len(filled_descriptions) > 1:
try:
tfidf = TfidfVectorizer(stop_words='english')
tfidf_matrix = tfidf.fit_transform(filled_descriptions)
suggestions = []
for idx, row in incomplete_records.iterrows():
if pd.isna(row['subject']) and pd.notna(row['description']):
desc_vec = tfidf.transform([str(row['description'])])
sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
top_idx = sims.argmax()
suggested_subject = metadata_df.iloc[top_idx]['subject']
if pd.notna(suggested_subject) and suggested_subject:
suggestions.append((row['title'], suggested_subject))
if suggestions:
suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
st.dataframe(suggestions_df)
else:
st.info("No metadata enhancement suggestions available.")
except Exception as e:
st.error(f"Error generating metadata suggestions: {e}")
else:
st.info("Not enough descriptive data to generate metadata suggestions.")
else:
st.warning("No metadata records found for this collection. Try selecting another one.")