Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,126 +1,108 @@
|
|
|
|
|
| 1 |
import requests
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import streamlit as st
|
|
|
|
| 5 |
import plotly.express as px
|
| 6 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 7 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 8 |
|
| 9 |
-
# Custom CSS for
|
| 10 |
st.markdown("""
|
| 11 |
<style>
|
| 12 |
-
|
| 13 |
.main {
|
| 14 |
-
background-color: #
|
| 15 |
-
color:
|
|
|
|
| 16 |
}
|
| 17 |
-
|
| 18 |
-
/* Container styling */
|
| 19 |
.block-container {
|
| 20 |
-
background-color:
|
| 21 |
-
color:
|
| 22 |
-
padding-left: 2rem !important;
|
| 23 |
-
padding-right: 2rem !important;
|
| 24 |
}
|
| 25 |
-
|
| 26 |
-
/* Header styling */
|
| 27 |
-
header[data-testid="stHeader"] {
|
| 28 |
-
background-color: #1A1A1A !important;
|
| 29 |
-
}
|
| 30 |
-
|
| 31 |
-
/* Sidebar styling */
|
| 32 |
section[data-testid="stSidebar"] > div:first-child {
|
| 33 |
-
background-color: #
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
border-radius: 12px;
|
| 37 |
-
|
| 38 |
}
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
html, body, [data-testid="stApp"] {
|
| 42 |
background-color: #1A1A1A !important;
|
| 43 |
}
|
| 44 |
-
|
| 45 |
-
/* Custom table styling */
|
| 46 |
.custom-table {
|
| 47 |
-
background-color: #
|
| 48 |
-
color:
|
| 49 |
font-family: monospace;
|
| 50 |
padding: 1rem;
|
| 51 |
border-radius: 8px;
|
| 52 |
overflow-x: auto;
|
| 53 |
white-space: pre;
|
| 54 |
-
border: 1px solid #
|
|
|
|
| 55 |
}
|
| 56 |
-
|
| 57 |
-
/* Sidebar stats styling */
|
| 58 |
.sidebar-stats {
|
| 59 |
color: lightgray !important;
|
| 60 |
font-size: 1.1rem !important;
|
| 61 |
margin-top: 1.5rem;
|
| 62 |
font-weight: 600;
|
| 63 |
}
|
| 64 |
-
|
| 65 |
-
/* Sidebar contrast block */
|
| 66 |
.sidebar-contrast-block {
|
| 67 |
-
background-color: #
|
| 68 |
padding: 1.25rem;
|
| 69 |
border-radius: 10px;
|
| 70 |
margin-top: 1.5rem;
|
| 71 |
}
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
.stDataFrame {
|
| 75 |
-
color: white !important;
|
| 76 |
-
}
|
| 77 |
-
|
| 78 |
-
/* Markdown text color */
|
| 79 |
-
.stMarkdown {
|
| 80 |
-
color: white !important;
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
/* Title styling */
|
| 84 |
-
h1, h2, h3 {
|
| 85 |
-
color: white !important;
|
| 86 |
-
}
|
| 87 |
-
|
| 88 |
-
/* Alert styling */
|
| 89 |
-
.stAlert {
|
| 90 |
-
background-color: #2e2e2e !important;
|
| 91 |
-
color: white !important;
|
| 92 |
-
padding: 1.25rem !important;
|
| 93 |
-
font-size: 1rem !important;
|
| 94 |
-
border-radius: 0.5rem !important;
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
-
/* Chart background */
|
| 98 |
-
.js-plotly-plot .plotly .main-svg {
|
| 99 |
-
background-color: #1A1A1A !important;
|
| 100 |
-
}
|
| 101 |
-
|
| 102 |
-
/* Completeness breakdown section */
|
| 103 |
-
.field-completeness {
|
| 104 |
-
background-color: #2e2e2e;
|
| 105 |
-
padding: 1.2rem;
|
| 106 |
-
border-radius: 10px;
|
| 107 |
-
margin-top: 1.5rem;
|
| 108 |
-
color: lightgray;
|
| 109 |
-
}
|
| 110 |
-
</style>
|
| 111 |
""", unsafe_allow_html=True)
|
| 112 |
|
| 113 |
-
#
|
| 114 |
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)
|
| 115 |
|
| 116 |
-
#
|
| 117 |
st.title("MetaDiscovery Agent for Library of Congress Collections")
|
| 118 |
st.markdown("""
|
| 119 |
-
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
|
| 120 |
-
analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
|
| 121 |
""")
|
| 122 |
|
| 123 |
-
#
|
| 124 |
collections = {
|
| 125 |
"American Revolutionary War Maps": "american+revolutionary+war+maps",
|
| 126 |
"Civil War Maps": "civil+war+maps",
|
|
@@ -128,40 +110,62 @@ collections = {
|
|
| 128 |
"World War I Posters": "world+war+posters"
|
| 129 |
}
|
| 130 |
|
| 131 |
-
#
|
|
|
|
|
|
|
|
|
|
| 132 |
metadata_df = pd.DataFrame()
|
| 133 |
|
| 134 |
-
# Add
|
| 135 |
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
|
| 136 |
search_query = collections[selected]
|
| 137 |
|
| 138 |
# Define the collection URL
|
| 139 |
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
|
| 140 |
|
| 141 |
-
# Create
|
| 142 |
stats_placeholder = st.sidebar.empty()
|
|
|
|
|
|
|
| 143 |
completeness_placeholder = st.sidebar.empty()
|
| 144 |
|
| 145 |
-
# Helpful Resources (styled
|
|
|
|
|
|
|
|
|
|
| 146 |
st.sidebar.markdown("""
|
| 147 |
-
<
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
</ul>
|
|
|
|
| 159 |
</div>
|
| 160 |
""", unsafe_allow_html=True)
|
| 161 |
|
| 162 |
-
# Set fetch_data to True to automatically fetch data
|
| 163 |
-
fetch_data = True
|
| 164 |
|
|
|
|
|
|
|
|
|
|
| 165 |
if fetch_data:
|
| 166 |
# Display a loading spinner while fetching data
|
| 167 |
with st.spinner(f"Fetching data for {selected}..."):
|
|
@@ -228,23 +232,6 @@ if fetch_data:
|
|
| 228 |
filled_fields = metadata_df.apply(lambda row: row.map(lambda x: not is_incomplete(x)), axis=1).sum().sum()
|
| 229 |
overall_percent = (filled_fields / total_fields) * 100
|
| 230 |
|
| 231 |
-
# Add "Overall Metadata Completeness" indicator to sidebar
|
| 232 |
-
st.sidebar.markdown(
|
| 233 |
-
f"""
|
| 234 |
-
<div style='
|
| 235 |
-
background-color: #2e2e2e;
|
| 236 |
-
padding: 1rem;
|
| 237 |
-
border-radius: 10px;
|
| 238 |
-
margin-top: 1.5rem;
|
| 239 |
-
text-align: center;
|
| 240 |
-
'>
|
| 241 |
-
<h3 style='color: lightgray; font-size: 1rem; margin-bottom: 0.5rem;'>Overall Metadata Completeness:</h3>
|
| 242 |
-
<p style='color: white; font-size: 1.8rem; font-weight: bold; margin: 0;'>{overall_percent:.1f}%</p>
|
| 243 |
-
</div>
|
| 244 |
-
""",
|
| 245 |
-
unsafe_allow_html=True
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
# Field-by-field completeness
|
| 249 |
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
| 250 |
completeness_table = completeness.round(1).to_frame(name="Completeness (%)")
|
|
@@ -252,85 +239,79 @@ if fetch_data:
|
|
| 252 |
# Render stats summary in sidebar
|
| 253 |
stats_html = f"""
|
| 254 |
<div class="sidebar-stats">
|
| 255 |
-
<h3 style="color: lightgray;
|
| 256 |
<p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p>
|
| 257 |
<p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p>
|
|
|
|
| 258 |
</div>
|
| 259 |
"""
|
| 260 |
stats_placeholder.markdown(stats_html, unsafe_allow_html=True)
|
| 261 |
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
with completeness_placeholder:
|
| 264 |
st.markdown("""
|
| 265 |
-
<div
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
""", unsafe_allow_html=True)
|
| 268 |
|
| 269 |
-
# Create a dataframe showing completeness percentages
|
| 270 |
-
completeness_df = pd.DataFrame({
|
| 271 |
-
"Field": completeness.index,
|
| 272 |
-
"Completeness (%)": completeness.values
|
| 273 |
-
})
|
| 274 |
-
|
| 275 |
-
# FIX: Format the values before styling to avoid the ValueError
|
| 276 |
-
# Convert percentages to strings with format applied
|
| 277 |
-
completeness_df["Completeness (%)"] = completeness_df["Completeness (%)"].apply(lambda x: f"{x:.1f}")
|
| 278 |
-
|
| 279 |
-
# Display the dataframe directly in the sidebar
|
| 280 |
st.dataframe(
|
| 281 |
-
|
| 282 |
use_container_width=True,
|
| 283 |
height=240
|
| 284 |
)
|
| 285 |
|
| 286 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 287 |
|
| 288 |
-
|
| 289 |
-
st.subheader("Retrieved Metadata Sample")
|
| 290 |
-
st.dataframe(metadata_df.head())
|
| 291 |
|
| 292 |
-
#
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
# FIX: Convert percentages to numeric for plotting
|
| 296 |
-
completeness_df["Completeness (%)"] = pd.to_numeric(completeness_df["Completeness (%)"])
|
| 297 |
-
|
| 298 |
-
# Create a bar chart with a dark theme to match the screenshot
|
| 299 |
-
fig = px.bar(
|
| 300 |
-
completeness_df,
|
| 301 |
-
x="Field",
|
| 302 |
-
y="Completeness (%)",
|
| 303 |
-
title="Metadata Completeness by Field",
|
| 304 |
-
color="Completeness (%)",
|
| 305 |
-
color_continuous_scale="Greens"
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
-
# Update the chart layout to match dark theme
|
| 309 |
-
fig.update_layout(
|
| 310 |
-
plot_bgcolor="#1A1A1A",
|
| 311 |
-
paper_bgcolor="#1A1A1A",
|
| 312 |
-
font_color="white",
|
| 313 |
-
title_font_color="white",
|
| 314 |
-
margin=dict(l=10, r=10, t=40, b=10),
|
| 315 |
-
coloraxis_showscale=False
|
| 316 |
-
)
|
| 317 |
-
|
| 318 |
-
# Update axes
|
| 319 |
-
fig.update_xaxes(title_font_color="white", tickfont_color="white", gridcolor="#333333")
|
| 320 |
-
fig.update_yaxes(title_font_color="white", tickfont_color="white", gridcolor="#333333")
|
| 321 |
-
|
| 322 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 323 |
|
| 324 |
-
# Enhanced Metadata section
|
| 325 |
-
st.subheader("β¨ Suggested Metadata Enhancements")
|
| 326 |
|
| 327 |
-
|
|
|
|
| 328 |
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
| 329 |
incomplete_records = metadata_df[incomplete_mask]
|
|
|
|
|
|
|
|
|
|
| 330 |
incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()]
|
| 331 |
reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()]
|
| 332 |
-
|
| 333 |
-
# Create TF-IDF vectorizer
|
| 334 |
tfidf = TfidfVectorizer(stop_words='english')
|
| 335 |
|
| 336 |
if len(incomplete_with_desc) > 1 and len(reference_df) > 1:
|
|
|
|
| 1 |
+
# MetaDiscovery Agent - LOC API with Enhanced Completeness and Quality Analysis
|
| 2 |
import requests
|
| 3 |
import pandas as pd
|
| 4 |
import numpy as np
|
| 5 |
import streamlit as st
|
| 6 |
+
import matplotlib
|
| 7 |
import plotly.express as px
|
| 8 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
|
| 11 |
+
# Custom CSS for white background, styled sidebar, banner, and dark grey font
|
| 12 |
st.markdown("""
|
| 13 |
<style>
|
| 14 |
+
|
| 15 |
.main {
|
| 16 |
+
background-color: #D3D3D3 !important;
|
| 17 |
+
color: #1A1A1A!important;
|
| 18 |
+
|
| 19 |
}
|
|
|
|
|
|
|
| 20 |
.block-container {
|
| 21 |
+
background-color: gray !important;
|
| 22 |
+
color: #808080!important;
|
|
|
|
|
|
|
| 23 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
section[data-testid="stSidebar"] > div:first-child {
|
| 25 |
+
background-color: #808080 !important;
|
| 26 |
+
padding: 1rem;
|
| 27 |
+
border-radius: 0.5rem;
|
| 28 |
+
color: #808080 !important;
|
| 29 |
+
}
|
| 30 |
+
.stMarkdown, .stTextInput, .stDataFrame {
|
| 31 |
+
color: #1A1A1A!important;
|
| 32 |
+
}
|
| 33 |
+
img.banner {
|
| 34 |
+
width: 100%;
|
| 35 |
border-radius: 12px;
|
| 36 |
+
margin-bottom: 1rem;
|
| 37 |
}
|
| 38 |
+
.stAlert {
|
| 39 |
+
background-color: #f0f0f5 !important;
|
| 40 |
+
color: #333333 !important;
|
| 41 |
+
padding: 1.25rem !important;
|
| 42 |
+
font-size: 1rem !important;
|
| 43 |
+
border-radius: 0.5rem !important;
|
| 44 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
|
| 45 |
+
}
|
| 46 |
+
header[data-testid="stHeader"] {
|
| 47 |
+
background-color: gray !important;
|
| 48 |
+
}
|
| 49 |
+
section[data-testid="stSidebar"] > div:first-child {
|
| 50 |
+
background-color: #1A1A1A !important;
|
| 51 |
+
color: #FFFFFF !important;
|
| 52 |
+
padding: 2rem 1.5rem 1.5rem 1.5rem !important;
|
| 53 |
+
border-radius: 12px;
|
| 54 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
| 55 |
+
font-size: 0.95rem;
|
| 56 |
+
line-height: 1.5;
|
| 57 |
+
}
|
| 58 |
+
.block-container {
|
| 59 |
+
background-color: gray !important;
|
| 60 |
+
color: #1A1A1A !important;
|
| 61 |
+
padding-left: 2rem !important;
|
| 62 |
+
padding-right: 2rem !important;
|
| 63 |
+
box-shadow: none !important;
|
| 64 |
+
}
|
| 65 |
html, body, [data-testid="stApp"] {
|
| 66 |
background-color: #1A1A1A !important;
|
| 67 |
}
|
|
|
|
|
|
|
| 68 |
.custom-table {
|
| 69 |
+
background-color: #D3D3D3;
|
| 70 |
+
color: #1A1A1A;
|
| 71 |
font-family: monospace;
|
| 72 |
padding: 1rem;
|
| 73 |
border-radius: 8px;
|
| 74 |
overflow-x: auto;
|
| 75 |
white-space: pre;
|
| 76 |
+
border: 1px solid #ccc;
|
| 77 |
+
|
| 78 |
}
|
|
|
|
|
|
|
| 79 |
.sidebar-stats {
|
| 80 |
color: lightgray !important;
|
| 81 |
font-size: 1.1rem !important;
|
| 82 |
margin-top: 1.5rem;
|
| 83 |
font-weight: 600;
|
| 84 |
}
|
|
|
|
|
|
|
| 85 |
.sidebar-contrast-block {
|
| 86 |
+
background-color: #2b2b2b !important; /* Slightly lighter than #1A1A1A */
|
| 87 |
padding: 1.25rem;
|
| 88 |
border-radius: 10px;
|
| 89 |
margin-top: 1.5rem;
|
| 90 |
}
|
| 91 |
+
|
| 92 |
+
</style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
""", unsafe_allow_html=True)
|
| 94 |
|
| 95 |
+
# OPTION 1: Use an image from a URL for the banner
|
| 96 |
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)
|
| 97 |
|
| 98 |
+
# Streamlit app header
|
| 99 |
st.title("MetaDiscovery Agent for Library of Congress Collections")
|
| 100 |
st.markdown("""
|
| 101 |
+
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
|
| 102 |
+
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
|
| 103 |
""")
|
| 104 |
|
| 105 |
+
# Updated collection URLs using the correct LOC API format
|
| 106 |
collections = {
|
| 107 |
"American Revolutionary War Maps": "american+revolutionary+war+maps",
|
| 108 |
"Civil War Maps": "civil+war+maps",
|
|
|
|
| 110 |
"World War I Posters": "world+war+posters"
|
| 111 |
}
|
| 112 |
|
| 113 |
+
# Sidebar for selecting collection
|
| 114 |
+
#st.sidebar.markdown("## Settings")
|
| 115 |
+
|
| 116 |
+
# Create empty metadata_df variable to ensure it exists before checking
|
| 117 |
metadata_df = pd.DataFrame()
|
| 118 |
|
| 119 |
+
# Add a key to the selectbox to ensure it refreshes properly
|
| 120 |
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
|
| 121 |
search_query = collections[selected]
|
| 122 |
|
| 123 |
# Define the collection URL
|
| 124 |
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
|
| 125 |
|
| 126 |
+
# Create an empty placeholder for Quick Stats
|
| 127 |
stats_placeholder = st.sidebar.empty()
|
| 128 |
+
|
| 129 |
+
# Create placeholder for Field Completeness Breakdown
|
| 130 |
completeness_placeholder = st.sidebar.empty()
|
| 131 |
|
| 132 |
+
# Helpful Resources (styled and moved below dropdown)
|
| 133 |
+
st.sidebar.markdown("### Helpful Resources", unsafe_allow_html=True)
|
| 134 |
+
# Helpful Resources styled section
|
| 135 |
+
# 3. Helpful Resources Section (Fixed, under Completeness)
|
| 136 |
st.sidebar.markdown("""
|
| 137 |
+
<style>
|
| 138 |
+
.sidebar-section h3 {
|
| 139 |
+
color: lightgray !important;
|
| 140 |
+
font-size: 1.1rem !important;
|
| 141 |
+
margin-top: 1.5rem;
|
| 142 |
+
}
|
| 143 |
+
.sidebar-links a {
|
| 144 |
+
color: lightgray !important;
|
| 145 |
+
text-decoration: none !important;
|
| 146 |
+
}
|
| 147 |
+
.sidebar-links a:hover {
|
| 148 |
+
text-decoration: underline !important;
|
| 149 |
+
}
|
| 150 |
+
</style>
|
| 151 |
+
<div class="sidebar-section">
|
| 152 |
+
<h3>π Helpful Resources</h3>
|
| 153 |
+
<div class="sidebar-links">
|
| 154 |
+
<ul style='padding-left: 1em'>
|
| 155 |
+
<li><a href="https://www.loc.gov/apis/" target="_blank">LOC API Info</a></li>
|
| 156 |
+
<li><a href="https://www.loc.gov/" target="_blank">Library of Congress Homepage</a></li>
|
| 157 |
+
<li><a href="https://www.loc.gov/collections/" target="_blank">LOC Digital Collections</a></li>
|
| 158 |
+
<li><a href="https://www.loc.gov/marc/" target="_blank">MARC Metadata Standards</a></li>
|
| 159 |
+
<li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank">LOC Digital Strategy</a></li>
|
| 160 |
</ul>
|
| 161 |
+
</div>
|
| 162 |
</div>
|
| 163 |
""", unsafe_allow_html=True)
|
| 164 |
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
# Add a fetch button to make the action explicit
|
| 167 |
+
fetch_data = True
|
| 168 |
+
|
| 169 |
if fetch_data:
|
| 170 |
# Display a loading spinner while fetching data
|
| 171 |
with st.spinner(f"Fetching data for {selected}..."):
|
|
|
|
| 232 |
filled_fields = metadata_df.apply(lambda row: row.map(lambda x: not is_incomplete(x)), axis=1).sum().sum()
|
| 233 |
overall_percent = (filled_fields / total_fields) * 100
|
| 234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
# Field-by-field completeness
|
| 236 |
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
| 237 |
completeness_table = completeness.round(1).to_frame(name="Completeness (%)")
|
|
|
|
| 239 |
# Render stats summary in sidebar
|
| 240 |
stats_html = f"""
|
| 241 |
<div class="sidebar-stats">
|
| 242 |
+
<h3 style="color: lightgray;">Quick Stats</h3>
|
| 243 |
<p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p>
|
| 244 |
<p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p>
|
| 245 |
+
<p style="color:lightgray;">Overall Metadata Completeness: <b>{overall_percent:.1f}%</b></p>
|
| 246 |
</div>
|
| 247 |
"""
|
| 248 |
stats_placeholder.markdown(stats_html, unsafe_allow_html=True)
|
| 249 |
|
| 250 |
+
|
| 251 |
+
# Utility functions for deeper metadata quality analysis
|
| 252 |
+
def is_incomplete(value):
|
| 253 |
+
return pd.isna(value) or value in ["", "N/A", "null", None]
|
| 254 |
+
|
| 255 |
+
def is_valid_date(value):
|
| 256 |
+
try:
|
| 257 |
+
pd.to_datetime(value)
|
| 258 |
+
return True
|
| 259 |
+
except:
|
| 260 |
+
return False
|
| 261 |
+
|
| 262 |
+
if not metadata_df.empty:
|
| 263 |
+
st.subheader("Retrieved Metadata Sample")
|
| 264 |
+
st.dataframe(metadata_df.head())
|
| 265 |
+
|
| 266 |
+
# Metadata completeness analysis (enhanced)
|
| 267 |
+
st.subheader("Metadata Completeness Analysis")
|
| 268 |
+
# Create the completeness table
|
| 269 |
+
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
| 270 |
+
completeness_df = pd.DataFrame({
|
| 271 |
+
"Field": completeness.index,
|
| 272 |
+
"Completeness (%)": completeness.values
|
| 273 |
+
})
|
| 274 |
+
completeness_table = completeness_df.set_index("Field")
|
| 275 |
+
|
| 276 |
+
# FILL THE PLACEHOLDER created earlier
|
| 277 |
+
|
| 278 |
+
# FILL THE PLACEHOLDER created earlier
|
| 279 |
with completeness_placeholder:
|
| 280 |
st.markdown("""
|
| 281 |
+
<div style='
|
| 282 |
+
background-color: #2e2e2e;
|
| 283 |
+
padding: 1.2rem;
|
| 284 |
+
border-radius: 10px;
|
| 285 |
+
margin-top: 1.5rem;
|
| 286 |
+
color: lightgray;
|
| 287 |
+
'>
|
| 288 |
+
<h4 style='margin-bottom: 1rem;'>π Field Completeness Breakdown</h4>
|
| 289 |
""", unsafe_allow_html=True)
|
| 290 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
st.dataframe(
|
| 292 |
+
completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
|
| 293 |
use_container_width=True,
|
| 294 |
height=240
|
| 295 |
)
|
| 296 |
|
| 297 |
st.markdown("</div>", unsafe_allow_html=True)
|
| 298 |
|
| 299 |
+
completeness_table = completeness.round(1).to_frame(name="Completeness (%)")
|
|
|
|
|
|
|
| 300 |
|
| 301 |
+
# Then continue plotting in main panel
|
| 302 |
+
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
| 303 |
+
st.plotly_chart(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
|
|
|
|
|
|
| 305 |
|
| 306 |
+
|
| 307 |
+
# Identify incomplete records
|
| 308 |
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
| 309 |
incomplete_records = metadata_df[incomplete_mask]
|
| 310 |
+
|
| 311 |
+
st.subheader("β¨ Suggested Metadata Enhancements")
|
| 312 |
+
|
| 313 |
incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()]
|
| 314 |
reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()]
|
|
|
|
|
|
|
| 315 |
tfidf = TfidfVectorizer(stop_words='english')
|
| 316 |
|
| 317 |
if len(incomplete_with_desc) > 1 and len(reference_df) > 1:
|