Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,126 +1,108 @@
|
|
|
|
1 |
import requests
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import streamlit as st
|
|
|
5 |
import plotly.express as px
|
6 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
|
9 |
-
# Custom CSS for
|
10 |
st.markdown("""
|
11 |
<style>
|
12 |
-
|
13 |
.main {
|
14 |
-
background-color: #
|
15 |
-
color:
|
|
|
16 |
}
|
17 |
-
|
18 |
-
/* Container styling */
|
19 |
.block-container {
|
20 |
-
background-color:
|
21 |
-
color:
|
22 |
-
padding-left: 2rem !important;
|
23 |
-
padding-right: 2rem !important;
|
24 |
}
|
25 |
-
|
26 |
-
/* Header styling */
|
27 |
-
header[data-testid="stHeader"] {
|
28 |
-
background-color: #1A1A1A !important;
|
29 |
-
}
|
30 |
-
|
31 |
-
/* Sidebar styling */
|
32 |
section[data-testid="stSidebar"] > div:first-child {
|
33 |
-
background-color: #
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
border-radius: 12px;
|
37 |
-
|
38 |
}
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
html, body, [data-testid="stApp"] {
|
42 |
background-color: #1A1A1A !important;
|
43 |
}
|
44 |
-
|
45 |
-
/* Custom table styling */
|
46 |
.custom-table {
|
47 |
-
background-color: #
|
48 |
-
color:
|
49 |
font-family: monospace;
|
50 |
padding: 1rem;
|
51 |
border-radius: 8px;
|
52 |
overflow-x: auto;
|
53 |
white-space: pre;
|
54 |
-
border: 1px solid #
|
|
|
55 |
}
|
56 |
-
|
57 |
-
/* Sidebar stats styling */
|
58 |
.sidebar-stats {
|
59 |
color: lightgray !important;
|
60 |
font-size: 1.1rem !important;
|
61 |
margin-top: 1.5rem;
|
62 |
font-weight: 600;
|
63 |
}
|
64 |
-
|
65 |
-
/* Sidebar contrast block */
|
66 |
.sidebar-contrast-block {
|
67 |
-
background-color: #
|
68 |
padding: 1.25rem;
|
69 |
border-radius: 10px;
|
70 |
margin-top: 1.5rem;
|
71 |
}
|
72 |
-
|
73 |
-
|
74 |
-
.stDataFrame {
|
75 |
-
color: white !important;
|
76 |
-
}
|
77 |
-
|
78 |
-
/* Markdown text color */
|
79 |
-
.stMarkdown {
|
80 |
-
color: white !important;
|
81 |
-
}
|
82 |
-
|
83 |
-
/* Title styling */
|
84 |
-
h1, h2, h3 {
|
85 |
-
color: white !important;
|
86 |
-
}
|
87 |
-
|
88 |
-
/* Alert styling */
|
89 |
-
.stAlert {
|
90 |
-
background-color: #2e2e2e !important;
|
91 |
-
color: white !important;
|
92 |
-
padding: 1.25rem !important;
|
93 |
-
font-size: 1rem !important;
|
94 |
-
border-radius: 0.5rem !important;
|
95 |
-
}
|
96 |
-
|
97 |
-
/* Chart background */
|
98 |
-
.js-plotly-plot .plotly .main-svg {
|
99 |
-
background-color: #1A1A1A !important;
|
100 |
-
}
|
101 |
-
|
102 |
-
/* Completeness breakdown section */
|
103 |
-
.field-completeness {
|
104 |
-
background-color: #2e2e2e;
|
105 |
-
padding: 1.2rem;
|
106 |
-
border-radius: 10px;
|
107 |
-
margin-top: 1.5rem;
|
108 |
-
color: lightgray;
|
109 |
-
}
|
110 |
-
</style>
|
111 |
""", unsafe_allow_html=True)
|
112 |
|
113 |
-
#
|
114 |
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)
|
115 |
|
116 |
-
#
|
117 |
st.title("MetaDiscovery Agent for Library of Congress Collections")
|
118 |
st.markdown("""
|
119 |
-
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
|
120 |
-
analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
|
121 |
""")
|
122 |
|
123 |
-
#
|
124 |
collections = {
|
125 |
"American Revolutionary War Maps": "american+revolutionary+war+maps",
|
126 |
"Civil War Maps": "civil+war+maps",
|
@@ -128,40 +110,62 @@ collections = {
|
|
128 |
"World War I Posters": "world+war+posters"
|
129 |
}
|
130 |
|
131 |
-
#
|
|
|
|
|
|
|
132 |
metadata_df = pd.DataFrame()
|
133 |
|
134 |
-
# Add
|
135 |
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
|
136 |
search_query = collections[selected]
|
137 |
|
138 |
# Define the collection URL
|
139 |
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
|
140 |
|
141 |
-
# Create
|
142 |
stats_placeholder = st.sidebar.empty()
|
|
|
|
|
143 |
completeness_placeholder = st.sidebar.empty()
|
144 |
|
145 |
-
# Helpful Resources (styled
|
|
|
|
|
|
|
146 |
st.sidebar.markdown("""
|
147 |
-
<
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
</ul>
|
|
|
159 |
</div>
|
160 |
""", unsafe_allow_html=True)
|
161 |
|
162 |
-
# Set fetch_data to True to automatically fetch data
|
163 |
-
fetch_data = True
|
164 |
|
|
|
|
|
|
|
165 |
if fetch_data:
|
166 |
# Display a loading spinner while fetching data
|
167 |
with st.spinner(f"Fetching data for {selected}..."):
|
@@ -228,23 +232,6 @@ if fetch_data:
|
|
228 |
filled_fields = metadata_df.apply(lambda row: row.map(lambda x: not is_incomplete(x)), axis=1).sum().sum()
|
229 |
overall_percent = (filled_fields / total_fields) * 100
|
230 |
|
231 |
-
# Add "Overall Metadata Completeness" indicator to sidebar
|
232 |
-
st.sidebar.markdown(
|
233 |
-
f"""
|
234 |
-
<div style='
|
235 |
-
background-color: #2e2e2e;
|
236 |
-
padding: 1rem;
|
237 |
-
border-radius: 10px;
|
238 |
-
margin-top: 1.5rem;
|
239 |
-
text-align: center;
|
240 |
-
'>
|
241 |
-
<h3 style='color: lightgray; font-size: 1rem; margin-bottom: 0.5rem;'>Overall Metadata Completeness:</h3>
|
242 |
-
<p style='color: white; font-size: 1.8rem; font-weight: bold; margin: 0;'>{overall_percent:.1f}%</p>
|
243 |
-
</div>
|
244 |
-
""",
|
245 |
-
unsafe_allow_html=True
|
246 |
-
)
|
247 |
-
|
248 |
# Field-by-field completeness
|
249 |
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
250 |
completeness_table = completeness.round(1).to_frame(name="Completeness (%)")
|
@@ -252,85 +239,79 @@ if fetch_data:
|
|
252 |
# Render stats summary in sidebar
|
253 |
stats_html = f"""
|
254 |
<div class="sidebar-stats">
|
255 |
-
<h3 style="color: lightgray;
|
256 |
<p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p>
|
257 |
<p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p>
|
|
|
258 |
</div>
|
259 |
"""
|
260 |
stats_placeholder.markdown(stats_html, unsafe_allow_html=True)
|
261 |
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
with completeness_placeholder:
|
264 |
st.markdown("""
|
265 |
-
<div
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
""", unsafe_allow_html=True)
|
268 |
|
269 |
-
# Create a dataframe showing completeness percentages
|
270 |
-
completeness_df = pd.DataFrame({
|
271 |
-
"Field": completeness.index,
|
272 |
-
"Completeness (%)": completeness.values
|
273 |
-
})
|
274 |
-
|
275 |
-
# FIX: Format the values before styling to avoid the ValueError
|
276 |
-
# Convert percentages to strings with format applied
|
277 |
-
completeness_df["Completeness (%)"] = completeness_df["Completeness (%)"].apply(lambda x: f"{x:.1f}")
|
278 |
-
|
279 |
-
# Display the dataframe directly in the sidebar
|
280 |
st.dataframe(
|
281 |
-
|
282 |
use_container_width=True,
|
283 |
height=240
|
284 |
)
|
285 |
|
286 |
st.markdown("</div>", unsafe_allow_html=True)
|
287 |
|
288 |
-
|
289 |
-
st.subheader("Retrieved Metadata Sample")
|
290 |
-
st.dataframe(metadata_df.head())
|
291 |
|
292 |
-
#
|
293 |
-
|
294 |
-
|
295 |
-
# FIX: Convert percentages to numeric for plotting
|
296 |
-
completeness_df["Completeness (%)"] = pd.to_numeric(completeness_df["Completeness (%)"])
|
297 |
-
|
298 |
-
# Create a bar chart with a dark theme to match the screenshot
|
299 |
-
fig = px.bar(
|
300 |
-
completeness_df,
|
301 |
-
x="Field",
|
302 |
-
y="Completeness (%)",
|
303 |
-
title="Metadata Completeness by Field",
|
304 |
-
color="Completeness (%)",
|
305 |
-
color_continuous_scale="Greens"
|
306 |
-
)
|
307 |
-
|
308 |
-
# Update the chart layout to match dark theme
|
309 |
-
fig.update_layout(
|
310 |
-
plot_bgcolor="#1A1A1A",
|
311 |
-
paper_bgcolor="#1A1A1A",
|
312 |
-
font_color="white",
|
313 |
-
title_font_color="white",
|
314 |
-
margin=dict(l=10, r=10, t=40, b=10),
|
315 |
-
coloraxis_showscale=False
|
316 |
-
)
|
317 |
-
|
318 |
-
# Update axes
|
319 |
-
fig.update_xaxes(title_font_color="white", tickfont_color="white", gridcolor="#333333")
|
320 |
-
fig.update_yaxes(title_font_color="white", tickfont_color="white", gridcolor="#333333")
|
321 |
-
|
322 |
-
st.plotly_chart(fig, use_container_width=True)
|
323 |
|
324 |
-
# Enhanced Metadata section
|
325 |
-
st.subheader("β¨ Suggested Metadata Enhancements")
|
326 |
|
327 |
-
|
|
|
328 |
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
329 |
incomplete_records = metadata_df[incomplete_mask]
|
|
|
|
|
|
|
330 |
incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()]
|
331 |
reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()]
|
332 |
-
|
333 |
-
# Create TF-IDF vectorizer
|
334 |
tfidf = TfidfVectorizer(stop_words='english')
|
335 |
|
336 |
if len(incomplete_with_desc) > 1 and len(reference_df) > 1:
|
|
|
1 |
+
# MetaDiscovery Agent - LOC API with Enhanced Completeness and Quality Analysis
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
import streamlit as st
|
6 |
+
import matplotlib
|
7 |
import plotly.express as px
|
8 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
9 |
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
|
11 |
+
# Custom CSS for white background, styled sidebar, banner, and dark grey font
|
12 |
st.markdown("""
|
13 |
<style>
|
14 |
+
|
15 |
.main {
|
16 |
+
background-color: #D3D3D3 !important;
|
17 |
+
color: #1A1A1A!important;
|
18 |
+
|
19 |
}
|
|
|
|
|
20 |
.block-container {
|
21 |
+
background-color: gray !important;
|
22 |
+
color: #808080!important;
|
|
|
|
|
23 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
section[data-testid="stSidebar"] > div:first-child {
|
25 |
+
background-color: #808080 !important;
|
26 |
+
padding: 1rem;
|
27 |
+
border-radius: 0.5rem;
|
28 |
+
color: #808080 !important;
|
29 |
+
}
|
30 |
+
.stMarkdown, .stTextInput, .stDataFrame {
|
31 |
+
color: #1A1A1A!important;
|
32 |
+
}
|
33 |
+
img.banner {
|
34 |
+
width: 100%;
|
35 |
border-radius: 12px;
|
36 |
+
margin-bottom: 1rem;
|
37 |
}
|
38 |
+
.stAlert {
|
39 |
+
background-color: #f0f0f5 !important;
|
40 |
+
color: #333333 !important;
|
41 |
+
padding: 1.25rem !important;
|
42 |
+
font-size: 1rem !important;
|
43 |
+
border-radius: 0.5rem !important;
|
44 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
|
45 |
+
}
|
46 |
+
header[data-testid="stHeader"] {
|
47 |
+
background-color: gray !important;
|
48 |
+
}
|
49 |
+
section[data-testid="stSidebar"] > div:first-child {
|
50 |
+
background-color: #1A1A1A !important;
|
51 |
+
color: #FFFFFF !important;
|
52 |
+
padding: 2rem 1.5rem 1.5rem 1.5rem !important;
|
53 |
+
border-radius: 12px;
|
54 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
55 |
+
font-size: 0.95rem;
|
56 |
+
line-height: 1.5;
|
57 |
+
}
|
58 |
+
.block-container {
|
59 |
+
background-color: gray !important;
|
60 |
+
color: #1A1A1A !important;
|
61 |
+
padding-left: 2rem !important;
|
62 |
+
padding-right: 2rem !important;
|
63 |
+
box-shadow: none !important;
|
64 |
+
}
|
65 |
html, body, [data-testid="stApp"] {
|
66 |
background-color: #1A1A1A !important;
|
67 |
}
|
|
|
|
|
68 |
.custom-table {
|
69 |
+
background-color: #D3D3D3;
|
70 |
+
color: #1A1A1A;
|
71 |
font-family: monospace;
|
72 |
padding: 1rem;
|
73 |
border-radius: 8px;
|
74 |
overflow-x: auto;
|
75 |
white-space: pre;
|
76 |
+
border: 1px solid #ccc;
|
77 |
+
|
78 |
}
|
|
|
|
|
79 |
.sidebar-stats {
|
80 |
color: lightgray !important;
|
81 |
font-size: 1.1rem !important;
|
82 |
margin-top: 1.5rem;
|
83 |
font-weight: 600;
|
84 |
}
|
|
|
|
|
85 |
.sidebar-contrast-block {
|
86 |
+
background-color: #2b2b2b !important; /* Slightly lighter than #1A1A1A */
|
87 |
padding: 1.25rem;
|
88 |
border-radius: 10px;
|
89 |
margin-top: 1.5rem;
|
90 |
}
|
91 |
+
|
92 |
+
</style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
""", unsafe_allow_html=True)
|
94 |
|
95 |
+
# OPTION 1: Use an image from a URL for the banner
|
96 |
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)
|
97 |
|
98 |
+
# Streamlit app header
|
99 |
st.title("MetaDiscovery Agent for Library of Congress Collections")
|
100 |
st.markdown("""
|
101 |
+
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
|
102 |
+
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
|
103 |
""")
|
104 |
|
105 |
+
# Updated collection URLs using the correct LOC API format
|
106 |
collections = {
|
107 |
"American Revolutionary War Maps": "american+revolutionary+war+maps",
|
108 |
"Civil War Maps": "civil+war+maps",
|
|
|
110 |
"World War I Posters": "world+war+posters"
|
111 |
}
|
112 |
|
113 |
+
# Sidebar for selecting collection
|
114 |
+
#st.sidebar.markdown("## Settings")
|
115 |
+
|
116 |
+
# Create empty metadata_df variable to ensure it exists before checking
|
117 |
metadata_df = pd.DataFrame()
|
118 |
|
119 |
+
# Add a key to the selectbox to ensure it refreshes properly
|
120 |
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
|
121 |
search_query = collections[selected]
|
122 |
|
123 |
# Define the collection URL
|
124 |
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
|
125 |
|
126 |
+
# Create an empty placeholder for Quick Stats
|
127 |
stats_placeholder = st.sidebar.empty()
|
128 |
+
|
129 |
+
# Create placeholder for Field Completeness Breakdown
|
130 |
completeness_placeholder = st.sidebar.empty()
|
131 |
|
132 |
+
# Helpful Resources (styled and moved below dropdown)
|
133 |
+
st.sidebar.markdown("### Helpful Resources", unsafe_allow_html=True)
|
134 |
+
# Helpful Resources styled section
|
135 |
+
# 3. Helpful Resources Section (Fixed, under Completeness)
|
136 |
st.sidebar.markdown("""
|
137 |
+
<style>
|
138 |
+
.sidebar-section h3 {
|
139 |
+
color: lightgray !important;
|
140 |
+
font-size: 1.1rem !important;
|
141 |
+
margin-top: 1.5rem;
|
142 |
+
}
|
143 |
+
.sidebar-links a {
|
144 |
+
color: lightgray !important;
|
145 |
+
text-decoration: none !important;
|
146 |
+
}
|
147 |
+
.sidebar-links a:hover {
|
148 |
+
text-decoration: underline !important;
|
149 |
+
}
|
150 |
+
</style>
|
151 |
+
<div class="sidebar-section">
|
152 |
+
<h3>π Helpful Resources</h3>
|
153 |
+
<div class="sidebar-links">
|
154 |
+
<ul style='padding-left: 1em'>
|
155 |
+
<li><a href="https://www.loc.gov/apis/" target="_blank">LOC API Info</a></li>
|
156 |
+
<li><a href="https://www.loc.gov/" target="_blank">Library of Congress Homepage</a></li>
|
157 |
+
<li><a href="https://www.loc.gov/collections/" target="_blank">LOC Digital Collections</a></li>
|
158 |
+
<li><a href="https://www.loc.gov/marc/" target="_blank">MARC Metadata Standards</a></li>
|
159 |
+
<li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank">LOC Digital Strategy</a></li>
|
160 |
</ul>
|
161 |
+
</div>
|
162 |
</div>
|
163 |
""", unsafe_allow_html=True)
|
164 |
|
|
|
|
|
165 |
|
166 |
+
# Add a fetch button to make the action explicit
|
167 |
+
fetch_data = True
|
168 |
+
|
169 |
if fetch_data:
|
170 |
# Display a loading spinner while fetching data
|
171 |
with st.spinner(f"Fetching data for {selected}..."):
|
|
|
232 |
filled_fields = metadata_df.apply(lambda row: row.map(lambda x: not is_incomplete(x)), axis=1).sum().sum()
|
233 |
overall_percent = (filled_fields / total_fields) * 100
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
# Field-by-field completeness
|
236 |
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
237 |
completeness_table = completeness.round(1).to_frame(name="Completeness (%)")
|
|
|
239 |
# Render stats summary in sidebar
|
240 |
stats_html = f"""
|
241 |
<div class="sidebar-stats">
|
242 |
+
<h3 style="color: lightgray;">Quick Stats</h3>
|
243 |
<p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p>
|
244 |
<p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p>
|
245 |
+
<p style="color:lightgray;">Overall Metadata Completeness: <b>{overall_percent:.1f}%</b></p>
|
246 |
</div>
|
247 |
"""
|
248 |
stats_placeholder.markdown(stats_html, unsafe_allow_html=True)
|
249 |
|
250 |
+
|
251 |
+
# Utility functions for deeper metadata quality analysis
|
252 |
+
def is_incomplete(value):
|
253 |
+
return pd.isna(value) or value in ["", "N/A", "null", None]
|
254 |
+
|
255 |
+
def is_valid_date(value):
|
256 |
+
try:
|
257 |
+
pd.to_datetime(value)
|
258 |
+
return True
|
259 |
+
except:
|
260 |
+
return False
|
261 |
+
|
262 |
+
if not metadata_df.empty:
|
263 |
+
st.subheader("Retrieved Metadata Sample")
|
264 |
+
st.dataframe(metadata_df.head())
|
265 |
+
|
266 |
+
# Metadata completeness analysis (enhanced)
|
267 |
+
st.subheader("Metadata Completeness Analysis")
|
268 |
+
# Create the completeness table
|
269 |
+
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
270 |
+
completeness_df = pd.DataFrame({
|
271 |
+
"Field": completeness.index,
|
272 |
+
"Completeness (%)": completeness.values
|
273 |
+
})
|
274 |
+
completeness_table = completeness_df.set_index("Field")
|
275 |
+
|
276 |
+
# FILL THE PLACEHOLDER created earlier
|
277 |
+
|
278 |
+
# FILL THE PLACEHOLDER created earlier
|
279 |
with completeness_placeholder:
|
280 |
st.markdown("""
|
281 |
+
<div style='
|
282 |
+
background-color: #2e2e2e;
|
283 |
+
padding: 1.2rem;
|
284 |
+
border-radius: 10px;
|
285 |
+
margin-top: 1.5rem;
|
286 |
+
color: lightgray;
|
287 |
+
'>
|
288 |
+
<h4 style='margin-bottom: 1rem;'>π Field Completeness Breakdown</h4>
|
289 |
""", unsafe_allow_html=True)
|
290 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
st.dataframe(
|
292 |
+
completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
|
293 |
use_container_width=True,
|
294 |
height=240
|
295 |
)
|
296 |
|
297 |
st.markdown("</div>", unsafe_allow_html=True)
|
298 |
|
299 |
+
completeness_table = completeness.round(1).to_frame(name="Completeness (%)")
|
|
|
|
|
300 |
|
301 |
+
# Then continue plotting in main panel
|
302 |
+
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
303 |
+
st.plotly_chart(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
|
|
|
|
305 |
|
306 |
+
|
307 |
+
# Identify incomplete records
|
308 |
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
309 |
incomplete_records = metadata_df[incomplete_mask]
|
310 |
+
|
311 |
+
st.subheader("β¨ Suggested Metadata Enhancements")
|
312 |
+
|
313 |
incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()]
|
314 |
reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()]
|
|
|
|
|
315 |
tfidf = TfidfVectorizer(stop_words='english')
|
316 |
|
317 |
if len(incomplete_with_desc) > 1 and len(reference_df) > 1:
|