Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# MetaDiscovery Agent - LOC API with Collection Selector and Search Endpoint + Enhanced Features
|
2 |
-
|
3 |
import requests
|
4 |
import pandas as pd
|
|
|
5 |
import streamlit as st
|
6 |
import plotly.express as px
|
7 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
@@ -18,7 +18,7 @@ an analysis of metadata completeness, suggests enhancements, and identifies auth
|
|
18 |
collections = {
|
19 |
"American Revolutionary War Maps": "american-revolutionary-war-maps",
|
20 |
"Civil War Maps": "civil-war-maps",
|
21 |
-
"Women
|
22 |
"World War I Posters": "world-war-i-posters"
|
23 |
}
|
24 |
|
@@ -27,28 +27,57 @@ st.sidebar.markdown("## Settings")
|
|
27 |
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()))
|
28 |
collection_path = collections[selected]
|
29 |
|
30 |
-
#
|
31 |
-
collection_url = f"https://www.loc.gov/
|
32 |
st.sidebar.write(f"Selected Collection: {selected}")
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
items = []
|
43 |
for record in records:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Create DataFrame
|
54 |
metadata_df = pd.DataFrame(items)
|
@@ -56,49 +85,61 @@ metadata_df = pd.DataFrame(items)
|
|
56 |
if not metadata_df.empty:
|
57 |
st.subheader("π¦ Retrieved Metadata Sample")
|
58 |
st.dataframe(metadata_df.head())
|
59 |
-
|
60 |
# Metadata completeness analysis
|
61 |
st.subheader("π§ Metadata Completeness Analysis")
|
62 |
completeness = metadata_df.notnull().mean() * 100
|
63 |
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
|
64 |
-
|
65 |
# Plot completeness
|
66 |
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
67 |
st.plotly_chart(fig)
|
68 |
-
|
69 |
# List records with missing values
|
70 |
st.subheader("β οΈ Records with Incomplete Metadata")
|
71 |
incomplete_records = metadata_df[metadata_df.isnull().any(axis=1)]
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
# Show exact items that need updates
|
75 |
st.subheader("π Identifiers of Items Needing Metadata Updates")
|
76 |
if not incomplete_records.empty:
|
77 |
st.write(incomplete_records[['id', 'title']])
|
78 |
else:
|
79 |
st.success("All records are complete!")
|
80 |
-
|
81 |
-
# Suggest metadata using text similarity
|
82 |
st.subheader("β¨ Suggested Metadata Enhancements")
|
|
|
|
|
83 |
filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
else:
|
101 |
-
st.info("
|
102 |
-
|
103 |
else:
|
104 |
-
st.warning("No metadata records found for this collection. Try selecting another one.")
|
|
|
1 |
# MetaDiscovery Agent - LOC API with Collection Selector and Search Endpoint + Enhanced Features
|
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
import streamlit as st
|
6 |
import plotly.express as px
|
7 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
18 |
collections = {
|
19 |
"American Revolutionary War Maps": "american-revolutionary-war-maps",
|
20 |
"Civil War Maps": "civil-war-maps",
|
21 |
+
"Women's Suffrage": "womens-suffrage",
|
22 |
"World War I Posters": "world-war-i-posters"
|
23 |
}
|
24 |
|
|
|
27 |
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()))
|
28 |
collection_path = collections[selected]
|
29 |
|
30 |
+
# Corrected LOC API URL format
|
31 |
+
collection_url = f"https://www.loc.gov/{collection_path}/?fo=json"
|
32 |
st.sidebar.write(f"Selected Collection: {selected}")
|
33 |
+
st.sidebar.write(f"API URL: {collection_url}")
|
34 |
+
|
35 |
+
# Fetch data from LOC API with error handling
|
36 |
+
try:
|
37 |
+
response = requests.get(collection_url)
|
38 |
+
response.raise_for_status() # Raise exception for 4XX/5XX responses
|
39 |
+
data = response.json()
|
40 |
+
|
41 |
+
# Handle both possible response structures
|
42 |
+
if "results" in data:
|
43 |
+
records = data.get("results", [])
|
44 |
+
elif "items" in data:
|
45 |
+
records = data.get("items", [])
|
46 |
+
else:
|
47 |
+
records = []
|
48 |
+
st.error("Unexpected API response structure. No records found.")
|
49 |
+
|
50 |
+
st.write(f"Retrieved {len(records)} records")
|
51 |
+
|
52 |
+
except requests.exceptions.RequestException as e:
|
53 |
+
st.error(f"API Connection Error: {e}")
|
54 |
+
records = []
|
55 |
+
except ValueError:
|
56 |
+
st.error("Failed to parse API response as JSON")
|
57 |
+
records = []
|
58 |
+
|
59 |
+
# Extract selected metadata fields with proper path traversal
|
60 |
items = []
|
61 |
for record in records:
|
62 |
+
# Handle different possible data structures
|
63 |
+
if isinstance(record, dict):
|
64 |
+
# For direct field access
|
65 |
+
item = {
|
66 |
+
"id": record.get("id", ""),
|
67 |
+
"title": record.get("title", ""),
|
68 |
+
"date": record.get("date", ""),
|
69 |
+
"subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
|
70 |
+
"creator": record.get("creator", ""),
|
71 |
+
"description": record.get("description", "")
|
72 |
+
}
|
73 |
+
|
74 |
+
# For nested field access (common in LOC API)
|
75 |
+
if not item["title"] and "item" in record:
|
76 |
+
item["title"] = record.get("item", {}).get("title", "")
|
77 |
+
if not item["date"] and "item" in record:
|
78 |
+
item["date"] = record.get("item", {}).get("date", "")
|
79 |
+
|
80 |
+
items.append(item)
|
81 |
|
82 |
# Create DataFrame
|
83 |
metadata_df = pd.DataFrame(items)
|
|
|
85 |
if not metadata_df.empty:
|
86 |
st.subheader("π¦ Retrieved Metadata Sample")
|
87 |
st.dataframe(metadata_df.head())
|
88 |
+
|
89 |
# Metadata completeness analysis
|
90 |
st.subheader("π§ Metadata Completeness Analysis")
|
91 |
completeness = metadata_df.notnull().mean() * 100
|
92 |
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
|
93 |
+
|
94 |
# Plot completeness
|
95 |
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
96 |
st.plotly_chart(fig)
|
97 |
+
|
98 |
# List records with missing values
|
99 |
st.subheader("β οΈ Records with Incomplete Metadata")
|
100 |
incomplete_records = metadata_df[metadata_df.isnull().any(axis=1)]
|
101 |
+
if not incomplete_records.empty:
|
102 |
+
st.dataframe(incomplete_records)
|
103 |
+
else:
|
104 |
+
st.success("All metadata fields are complete in this collection!")
|
105 |
+
|
106 |
# Show exact items that need updates
|
107 |
st.subheader("π Identifiers of Items Needing Metadata Updates")
|
108 |
if not incomplete_records.empty:
|
109 |
st.write(incomplete_records[['id', 'title']])
|
110 |
else:
|
111 |
st.success("All records are complete!")
|
112 |
+
|
113 |
+
# Suggest metadata using text similarity with better error handling
|
114 |
st.subheader("β¨ Suggested Metadata Enhancements")
|
115 |
+
|
116 |
+
# Only process if we have descriptions and enough data
|
117 |
filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
|
118 |
+
|
119 |
+
if len(filled_descriptions) > 1:
|
120 |
+
try:
|
121 |
+
tfidf = TfidfVectorizer(stop_words='english')
|
122 |
+
tfidf_matrix = tfidf.fit_transform(filled_descriptions)
|
123 |
+
sim_matrix = cosine_similarity(tfidf_matrix)
|
124 |
+
|
125 |
+
suggestions = []
|
126 |
+
for idx, row in incomplete_records.iterrows():
|
127 |
+
if pd.isna(row['subject']) and pd.notna(row['description']):
|
128 |
+
desc_vec = tfidf.transform([str(row['description'])])
|
129 |
+
sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
|
130 |
+
top_idx = sims.argmax()
|
131 |
+
suggested_subject = metadata_df.iloc[top_idx]['subject']
|
132 |
+
if pd.notna(suggested_subject) and suggested_subject: # Only add valid suggestions
|
133 |
+
suggestions.append((row['title'], suggested_subject))
|
134 |
+
|
135 |
+
if suggestions:
|
136 |
+
suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
|
137 |
+
st.dataframe(suggestions_df)
|
138 |
+
else:
|
139 |
+
st.info("No metadata enhancement suggestions available.")
|
140 |
+
except Exception as e:
|
141 |
+
st.error(f"Error generating metadata suggestions: {e}")
|
142 |
else:
|
143 |
+
st.info("Not enough descriptive data to generate metadata suggestions.")
|
|
|
144 |
else:
|
145 |
+
st.warning("No metadata records found for this collection. Try selecting another one.")
|