Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -69,7 +69,7 @@ st.markdown("""
|
|
69 |
""", unsafe_allow_html=True)
|
70 |
|
71 |
# Near the top of your app, after the CSS styling
|
72 |
-
st.image("https://
|
73 |
|
74 |
|
75 |
# Streamlit app header
|
@@ -160,11 +160,11 @@ def is_valid_date(value):
|
|
160 |
return False
|
161 |
|
162 |
if not metadata_df.empty:
|
163 |
-
st.subheader("
|
164 |
st.dataframe(metadata_df.head())
|
165 |
|
166 |
# Metadata completeness analysis (enhanced)
|
167 |
-
st.subheader("
|
168 |
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
169 |
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
|
170 |
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
@@ -174,19 +174,19 @@ if not metadata_df.empty:
|
|
174 |
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
175 |
incomplete_records = metadata_df[incomplete_mask]
|
176 |
|
177 |
-
st.subheader("
|
178 |
if not incomplete_records.empty:
|
179 |
st.dataframe(incomplete_records.astype(str))
|
180 |
else:
|
181 |
st.success("All metadata fields are complete in this collection!")
|
182 |
|
183 |
-
st.subheader("
|
184 |
if not incomplete_records.empty:
|
185 |
st.write(incomplete_records[['id', 'title']])
|
186 |
else:
|
187 |
st.success("All records are complete!")
|
188 |
|
189 |
-
st.subheader("
|
190 |
filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
|
191 |
if len(filled_descriptions) > 1:
|
192 |
try:
|
|
|
69 |
""", unsafe_allow_html=True)
|
70 |
|
71 |
# Near the top of your app, after the CSS styling
|
72 |
+
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)
|
73 |
|
74 |
|
75 |
# Streamlit app header
|
|
|
160 |
return False
|
161 |
|
162 |
if not metadata_df.empty:
|
163 |
+
st.subheader("Retrieved Metadata Sample")
|
164 |
st.dataframe(metadata_df.head())
|
165 |
|
166 |
# Metadata completeness analysis (enhanced)
|
167 |
+
st.subheader("Metadata Completeness Analysis")
|
168 |
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
169 |
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
|
170 |
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
|
|
174 |
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
175 |
incomplete_records = metadata_df[incomplete_mask]
|
176 |
|
177 |
+
st.subheader("Records with Incomplete Metadata")
|
178 |
if not incomplete_records.empty:
|
179 |
st.dataframe(incomplete_records.astype(str))
|
180 |
else:
|
181 |
st.success("All metadata fields are complete in this collection!")
|
182 |
|
183 |
+
st.subheader("Identifiers of Items Needing Metadata Updates")
|
184 |
if not incomplete_records.empty:
|
185 |
st.write(incomplete_records[['id', 'title']])
|
186 |
else:
|
187 |
st.success("All records are complete!")
|
188 |
|
189 |
+
st.subheader("Suggested Metadata Enhancements")
|
190 |
filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
|
191 |
if len(filled_descriptions) > 1:
|
192 |
try:
|