Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import streamlit as st
|
|
6 |
import plotly.express as px
|
7 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
-
import os
|
10 |
|
11 |
# Custom CSS for white background, styled sidebar, banner, and dark grey font
|
12 |
st.markdown("""
|
@@ -37,18 +36,18 @@ st.markdown("""
|
|
37 |
}
|
38 |
.stAlert {
|
39 |
background-color: #f0f0f5 !important;
|
40 |
-
color: #
|
41 |
padding: 1.25rem !important;
|
42 |
font-size: 1rem !important;
|
43 |
border-radius: 0.5rem !important;
|
44 |
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
|
45 |
}
|
46 |
header[data-testid="stHeader"] {
|
47 |
-
background-color:
|
48 |
}
|
49 |
section[data-testid="stSidebar"] > div:first-child {
|
50 |
background-color: #1A1A1A !important;
|
51 |
-
color: #
|
52 |
padding: 2rem 1.5rem 1.5rem 1.5rem !important;
|
53 |
border-radius: 12px;
|
54 |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
@@ -68,12 +67,11 @@ st.markdown("""
|
|
68 |
</style>
|
69 |
""", unsafe_allow_html=True)
|
70 |
|
71 |
-
#
|
72 |
-
st.image("https://
|
73 |
-
|
74 |
|
75 |
# Streamlit app header
|
76 |
-
st.title("Library of Congress Collections
|
77 |
st.markdown("""
|
78 |
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
|
79 |
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
|
@@ -89,7 +87,9 @@ collections = {
|
|
89 |
|
90 |
# Sidebar for selecting collection
|
91 |
st.sidebar.markdown("## Settings")
|
92 |
-
|
|
|
|
|
93 |
search_query = collections[selected]
|
94 |
|
95 |
# Define the collection URL
|
@@ -99,116 +99,122 @@ collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
|
|
99 |
st.sidebar.write(f"Selected Collection: {selected}")
|
100 |
st.sidebar.markdown(f"<span style='color: lightgray;'>API URL: {collection_url}</span>", unsafe_allow_html=True)
|
101 |
|
102 |
-
#
|
103 |
-
|
104 |
-
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36"
|
105 |
-
}
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
records = data.get("results", [])
|
114 |
-
elif "items" in data:
|
115 |
-
records = data.get("items", [])
|
116 |
-
else:
|
117 |
-
records = []
|
118 |
-
st.error("Unexpected API response structure. No records found.")
|
119 |
-
st.write(f"Retrieved {len(records)} records")
|
120 |
-
|
121 |
-
except requests.exceptions.RequestException as e:
|
122 |
-
st.error(f"API Connection Error: {e}")
|
123 |
-
records = []
|
124 |
-
except ValueError:
|
125 |
-
st.error("Failed to parse API response as JSON")
|
126 |
-
records = []
|
127 |
-
|
128 |
-
# Extract selected metadata fields
|
129 |
-
items = []
|
130 |
-
for record in records:
|
131 |
-
if isinstance(record, dict):
|
132 |
-
description = record.get("description", "")
|
133 |
-
if isinstance(description, list):
|
134 |
-
description = " ".join([str(d) for d in description])
|
135 |
-
item = {
|
136 |
-
"id": record.get("id", ""),
|
137 |
-
"title": record.get("title", ""),
|
138 |
-
"date": record.get("date", ""),
|
139 |
-
"subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
|
140 |
-
"creator": record.get("creator", ""),
|
141 |
-
"description": description
|
142 |
}
|
143 |
-
|
144 |
-
item["title"] = record.get("item", {}).get("title", "")
|
145 |
-
if not item["date"] and "item" in record:
|
146 |
-
item["date"] = record.get("item", {}).get("date", "")
|
147 |
-
items.append(item)
|
148 |
-
|
149 |
-
metadata_df = pd.DataFrame(items)
|
150 |
-
|
151 |
-
# Utility functions for deeper metadata quality analysis
|
152 |
-
def is_incomplete(value):
|
153 |
-
return pd.isna(value) or value in ["", "N/A", "null", None]
|
154 |
-
|
155 |
-
def is_valid_date(value):
|
156 |
-
try:
|
157 |
-
pd.to_datetime(value)
|
158 |
-
return True
|
159 |
-
except:
|
160 |
-
return False
|
161 |
-
|
162 |
-
if not metadata_df.empty:
|
163 |
-
st.subheader("Retrieved Metadata Sample")
|
164 |
-
st.dataframe(metadata_df.head())
|
165 |
-
|
166 |
-
# Metadata completeness analysis (enhanced)
|
167 |
-
st.subheader("Metadata Completeness Analysis")
|
168 |
-
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
169 |
-
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
|
170 |
-
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
171 |
-
st.plotly_chart(fig)
|
172 |
-
|
173 |
-
# Identify incomplete records
|
174 |
-
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
175 |
-
incomplete_records = metadata_df[incomplete_mask]
|
176 |
-
|
177 |
-
st.subheader("Records with Incomplete Metadata")
|
178 |
-
if not incomplete_records.empty:
|
179 |
-
st.dataframe(incomplete_records.astype(str))
|
180 |
-
else:
|
181 |
-
st.success("All metadata fields are complete in this collection!")
|
182 |
-
|
183 |
-
st.subheader("Identifiers of Items Needing Metadata Updates")
|
184 |
-
if not incomplete_records.empty:
|
185 |
-
st.write(incomplete_records[['id', 'title']])
|
186 |
-
else:
|
187 |
-
st.success("All records are complete!")
|
188 |
-
|
189 |
-
st.subheader("Suggested Metadata Enhancements")
|
190 |
-
filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
|
191 |
-
if len(filled_descriptions) > 1:
|
192 |
try:
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
else:
|
208 |
-
st.info("
|
209 |
-
|
210 |
-
st.
|
211 |
-
else:
|
212 |
-
st.info("Not enough descriptive data to generate metadata suggestions.")
|
213 |
-
else:
|
214 |
-
st.warning("No metadata records found for this collection. Try selecting another one.")
|
|
|
6 |
import plotly.express as px
|
7 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
9 |
|
10 |
# Custom CSS for white background, styled sidebar, banner, and dark grey font
|
11 |
st.markdown("""
|
|
|
36 |
}
|
37 |
.stAlert {
|
38 |
background-color: #f0f0f5 !important;
|
39 |
+
color: #333333 !important;
|
40 |
padding: 1.25rem !important;
|
41 |
font-size: 1rem !important;
|
42 |
border-radius: 0.5rem !important;
|
43 |
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
|
44 |
}
|
45 |
header[data-testid="stHeader"] {
|
46 |
+
background-color: #D3D3D3 !important;
|
47 |
}
|
48 |
section[data-testid="stSidebar"] > div:first-child {
|
49 |
background-color: #1A1A1A !important;
|
50 |
+
color: #FFFFFF !important;
|
51 |
padding: 2rem 1.5rem 1.5rem 1.5rem !important;
|
52 |
border-radius: 12px;
|
53 |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
|
|
67 |
</style>
|
68 |
""", unsafe_allow_html=True)
|
69 |
|
70 |
+
# OPTION 1: Use an image from a URL for the banner
|
71 |
+
st.image("https://www.loc.gov/static/images/logo-loc-new-branding.svg", use_container_width=True)
|
|
|
72 |
|
73 |
# Streamlit app header
|
74 |
+
st.title("MetaDiscovery Agent for Library of Congress Collections")
|
75 |
st.markdown("""
|
76 |
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
|
77 |
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
|
|
|
87 |
|
88 |
# Sidebar for selecting collection
|
89 |
st.sidebar.markdown("## Settings")
|
90 |
+
|
91 |
+
# Add a key to the selectbox to ensure it refreshes properly
|
92 |
+
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
|
93 |
search_query = collections[selected]
|
94 |
|
95 |
# Define the collection URL
|
|
|
99 |
st.sidebar.write(f"Selected Collection: {selected}")
|
100 |
st.sidebar.markdown(f"<span style='color: lightgray;'>API URL: {collection_url}</span>", unsafe_allow_html=True)
|
101 |
|
102 |
+
# Add a fetch button to make the action explicit
|
103 |
+
fetch_data = True
|
|
|
|
|
104 |
|
105 |
+
if fetch_data:
|
106 |
+
# Display a loading spinner while fetching data
|
107 |
+
with st.spinner(f"Fetching data for {selected}..."):
|
108 |
+
# Fetch data from LOC API with spoofed User-Agent header
|
109 |
+
headers = {
|
110 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
}
|
112 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
try:
|
114 |
+
response = requests.get(collection_url, headers=headers)
|
115 |
+
response.raise_for_status()
|
116 |
+
data = response.json()
|
117 |
+
|
118 |
+
if "results" in data:
|
119 |
+
records = data.get("results", [])
|
120 |
+
elif "items" in data:
|
121 |
+
records = data.get("items", [])
|
122 |
+
else:
|
123 |
+
records = []
|
124 |
+
st.error("Unexpected API response structure. No records found.")
|
125 |
+
st.write(f"Retrieved {len(records)} records")
|
126 |
+
|
127 |
+
except requests.exceptions.RequestException as e:
|
128 |
+
st.error(f"API Connection Error: {e}")
|
129 |
+
records = []
|
130 |
+
except ValueError:
|
131 |
+
st.error("Failed to parse API response as JSON")
|
132 |
+
records = []
|
133 |
+
|
134 |
+
# Extract selected metadata fields
|
135 |
+
items = []
|
136 |
+
for record in records:
|
137 |
+
if isinstance(record, dict):
|
138 |
+
description = record.get("description", "")
|
139 |
+
if isinstance(description, list):
|
140 |
+
description = " ".join([str(d) for d in description])
|
141 |
+
item = {
|
142 |
+
"id": record.get("id", ""),
|
143 |
+
"title": record.get("title", ""),
|
144 |
+
"date": record.get("date", ""),
|
145 |
+
"subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
|
146 |
+
"creator": record.get("creator", ""),
|
147 |
+
"description": description
|
148 |
+
}
|
149 |
+
if not item["title"] and "item" in record:
|
150 |
+
item["title"] = record.get("item", {}).get("title", "")
|
151 |
+
if not item["date"] and "item" in record:
|
152 |
+
item["date"] = record.get("item", {}).get("date", "")
|
153 |
+
items.append(item)
|
154 |
+
|
155 |
+
metadata_df = pd.DataFrame(items)
|
156 |
+
|
157 |
+
# Utility functions for deeper metadata quality analysis
|
158 |
+
def is_incomplete(value):
|
159 |
+
return pd.isna(value) or value in ["", "N/A", "null", None]
|
160 |
+
|
161 |
+
def is_valid_date(value):
|
162 |
+
try:
|
163 |
+
pd.to_datetime(value)
|
164 |
+
return True
|
165 |
+
except:
|
166 |
+
return False
|
167 |
+
|
168 |
+
if not metadata_df.empty:
|
169 |
+
st.subheader("📦 Retrieved Metadata Sample")
|
170 |
+
st.dataframe(metadata_df.head())
|
171 |
+
|
172 |
+
# Metadata completeness analysis (enhanced)
|
173 |
+
st.subheader("🧠 Metadata Completeness Analysis")
|
174 |
+
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
175 |
+
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
|
176 |
+
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
177 |
+
st.plotly_chart(fig)
|
178 |
+
|
179 |
+
# Identify incomplete records
|
180 |
+
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
181 |
+
incomplete_records = metadata_df[incomplete_mask]
|
182 |
+
|
183 |
+
st.subheader("⚠️ Records with Incomplete Metadata")
|
184 |
+
if not incomplete_records.empty:
|
185 |
+
st.dataframe(incomplete_records.astype(str))
|
186 |
+
else:
|
187 |
+
st.success("All metadata fields are complete in this collection!")
|
188 |
+
|
189 |
+
st.subheader("📌 Identifiers of Items Needing Metadata Updates")
|
190 |
+
if not incomplete_records.empty:
|
191 |
+
st.write(incomplete_records[['id', 'title']])
|
192 |
+
else:
|
193 |
+
st.success("All records are complete!")
|
194 |
+
|
195 |
+
st.subheader("✨ Suggested Metadata Enhancements")
|
196 |
+
filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
|
197 |
+
if len(filled_descriptions) > 1:
|
198 |
+
try:
|
199 |
+
tfidf = TfidfVectorizer(stop_words='english')
|
200 |
+
tfidf_matrix = tfidf.fit_transform(filled_descriptions)
|
201 |
+
suggestions = []
|
202 |
+
for idx, row in incomplete_records.iterrows():
|
203 |
+
if pd.isna(row['subject']) and pd.notna(row['description']):
|
204 |
+
desc_vec = tfidf.transform([str(row['description'])])
|
205 |
+
sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
|
206 |
+
top_idx = sims.argmax()
|
207 |
+
suggested_subject = metadata_df.iloc[top_idx]['subject']
|
208 |
+
if pd.notna(suggested_subject) and suggested_subject:
|
209 |
+
suggestions.append((row['title'], suggested_subject))
|
210 |
+
if suggestions:
|
211 |
+
suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
|
212 |
+
st.dataframe(suggestions_df)
|
213 |
+
else:
|
214 |
+
st.info("No metadata enhancement suggestions available.")
|
215 |
+
except Exception as e:
|
216 |
+
st.error(f"Error generating metadata suggestions: {e}")
|
217 |
else:
|
218 |
+
st.info("Not enough descriptive data to generate metadata suggestions.")
|
219 |
+
else:
|
220 |
+
st.warning("No metadata records found for this collection. Try selecting another one.")
|
|
|
|
|
|
|
|