Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -215,26 +215,30 @@ if fetch_data:
|
|
215 |
tfidf = TfidfVectorizer(stop_words='english')
|
216 |
try:
|
217 |
suggestions = []
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
227 |
if suggestions:
|
228 |
suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
|
229 |
-
st.
|
230 |
else:
|
231 |
st.markdown("""
|
232 |
<div class='custom-table'>
|
233 |
<b>ℹ️ No metadata enhancement suggestions available.</b>
|
234 |
</div>
|
235 |
""", unsafe_allow_html=True)
|
|
|
236 |
except Exception as e:
|
237 |
st.error(f"Error generating metadata suggestions: {e}")
|
|
|
238 |
else:
|
239 |
st.markdown("""
|
240 |
<div class='custom-table'>
|
|
|
215 |
tfidf = TfidfVectorizer(stop_words='english')
|
216 |
try:
|
217 |
suggestions = []
|
218 |
+
tfidf_matrix = tfidf.fit_transform(reference_df['description'])
|
219 |
+
|
220 |
+
for idx, row in incomplete_with_desc.iterrows():
|
221 |
+
if pd.isna(row['subject']) and pd.notna(row['description']):
|
222 |
+
desc_vec = tfidf.transform([str(row['description'])])
|
223 |
+
sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
|
224 |
+
top_idx = sims.argmax()
|
225 |
+
suggested_subject = metadata_df.iloc[top_idx]['subject']
|
226 |
+
if pd.notna(suggested_subject) and suggested_subject:
|
227 |
+
suggestions.append((row['title'], suggested_subject))
|
228 |
+
|
229 |
if suggestions:
|
230 |
suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
|
231 |
+
st.table(suggestions_df)
|
232 |
else:
|
233 |
st.markdown("""
|
234 |
<div class='custom-table'>
|
235 |
<b>ℹ️ No metadata enhancement suggestions available.</b>
|
236 |
</div>
|
237 |
""", unsafe_allow_html=True)
|
238 |
+
|
239 |
except Exception as e:
|
240 |
st.error(f"Error generating metadata suggestions: {e}")
|
241 |
+
|
242 |
else:
|
243 |
st.markdown("""
|
244 |
<div class='custom-table'>
|