Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MetaDiscovery Agent - Phase 1: LOC API Integration and Metadata Gap Analysis
|
| 2 |
+
|
| 3 |
+
import requests
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
|
| 8 |
+
# Streamlit app header
|
| 9 |
+
st.title("MetaDiscovery Agent for Library of Congress Collections")
|
| 10 |
+
st.markdown("""
|
| 11 |
+
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
|
| 12 |
+
an initial analysis of metadata completeness.
|
| 13 |
+
""")
|
| 14 |
+
|
| 15 |
+
# User selects a collection (predefined for prototype)
|
| 16 |
+
collection_url = "https://www.loc.gov/collections/american-revolutionary-war-maps/?fo=json"
|
| 17 |
+
st.sidebar.markdown("## Settings")
|
| 18 |
+
st.sidebar.write("Collection: American Revolutionary War Maps")
|
| 19 |
+
|
| 20 |
+
# Fetch data from LOC API
|
| 21 |
+
response = requests.get(collection_url)
|
| 22 |
+
data = response.json()
|
| 23 |
+
|
| 24 |
+
# Parse metadata records
|
| 25 |
+
records = data.get("results", [])
|
| 26 |
+
|
| 27 |
+
# Extract selected metadata fields
|
| 28 |
+
items = []
|
| 29 |
+
for record in records:
|
| 30 |
+
items.append({
|
| 31 |
+
"title": record.get("title"),
|
| 32 |
+
"date": record.get("date"),
|
| 33 |
+
"subject": record.get("subject"),
|
| 34 |
+
"creator": record.get("creator"),
|
| 35 |
+
"description": record.get("description")
|
| 36 |
+
})
|
| 37 |
+
|
| 38 |
+
# Create DataFrame
|
| 39 |
+
metadata_df = pd.DataFrame(items)
|
| 40 |
+
st.subheader("📦 Retrieved Metadata Sample")
|
| 41 |
+
st.dataframe(metadata_df.head())
|
| 42 |
+
|
| 43 |
+
# Metadata completeness analysis
|
| 44 |
+
st.subheader("🧠 Metadata Completeness Analysis")
|
| 45 |
+
completeness = metadata_df.notnull().mean() * 100
|
| 46 |
+
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
|
| 47 |
+
|
| 48 |
+
# Plot completeness
|
| 49 |
+
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
| 50 |
+
st.plotly_chart(fig)
|
| 51 |
+
|
| 52 |
+
# List records with missing values
|
| 53 |
+
st.subheader("⚠️ Records with Incomplete Metadata")
|
| 54 |
+
incomplete_records = metadata_df[metadata_df.isnull().any(axis=1)]
|
| 55 |
+
st.dataframe(incomplete_records)
|