import requests import pandas as pd import numpy as np import streamlit as st import matplotlib import plotly.express as px from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # Custom CSS st.markdown(""" """, unsafe_allow_html=True) # Use an image from a URL for the banner st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True) # Streamlit app header st.title("MetaDiscovery Agent for Library of Congress Collections") st.markdown(""" This tool connects to the LOC API, retrieves metadata from a selected collection, and performs an analysis of metadata completeness, suggests enhancements, and identifies authority gaps. """) # Updated collection URLs using the correct LOC API collections = { "American Revolutionary War Maps": "american+revolutionary+war+maps", "Civil War Maps": "civil+war+maps", "Women's Suffrage": "women+suffrage", "World War I Posters": "world+war+posters" } # Sidebar for selecting collection #st.sidebar.markdown("## Settings") # Create empty metadata_df variable to ensure it exists before checking metadata_df = pd.DataFrame() # Add a key to the selectbox to ensure it refreshes properly with st.sidebar: st.markdown("""
""", unsafe_allow_html=True) selected = st.radio("Select a Collection", list(collections.keys()), key="collection_selector") st.markdown("
", unsafe_allow_html=True) search_query = collections[selected] # Define the collection URL collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json" # Create an empty placeholder for Quick Stats stats_placeholder = st.sidebar.empty() # Add a fetch button to make the action explicit fetch_data = True if fetch_data: # Display a loading spinner while fetching data with st.spinner(f"Fetching data for {selected}..."): # Fetch data from LOC API with spoofed User-Agent header headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36" } try: response = requests.get(collection_url, headers=headers) response.raise_for_status() data = response.json() if "results" in data: records = data.get("results", []) elif "items" in data: records = data.get("items", []) else: records = [] st.error("Unexpected API response structure. No records found.") st.write(f"Retrieved {len(records)} records") except requests.exceptions.RequestException as e: st.error(f"API Connection Error: {e}") records = [] except ValueError: st.error("Failed to parse API response as JSON") records = [] # Extract selected metadata fields items = [] for record in records: if isinstance(record, dict): description = record.get("description", "") if isinstance(description, list): description = " ".join([str(d) for d in description]) item = { "id": record.get("id", ""), "title": record.get("title", ""), "date": record.get("date", ""), "subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""), "creator": record.get("creator", ""), "description": description } if not item["title"] and "item" in record: item["title"] = record.get("item", {}).get("title", "") if not item["date"] and "item" in record: item["date"] = record.get("item", {}).get("date", "") items.append(item) metadata_df = pd.DataFrame(items) # Define custom completeness check def is_incomplete(value): return pd.isna(value) or value in ["", "N/A", "null", None] if not metadata_df.empty: incomplete_mask = metadata_df.map(is_incomplete).any(axis=1) incomplete_count = incomplete_mask.sum() total_fields = metadata_df.size filled_fields = (~metadata_df.map(is_incomplete)).sum().sum() overall_percent = (filled_fields / total_fields) * 100 # Field-level completeness completeness = (~metadata_df.map(is_incomplete)).mean() * 100 completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values}) completeness_table = completeness_df.set_index("Field") # Sidebar Quick Stats quick_stats_df = pd.DataFrame({ "Metric": ["Total Records", "Incomplete Records", "Overall Completeness (%)"], "Value": [len(metadata_df), incomplete_count, round(overall_percent, 1)] }) # Card-like background container st.sidebar.markdown("""

Quick Stats

""", unsafe_allow_html=True) # Reset index to hide row numbers quick_stats_df_reset = quick_stats_df.reset_index(drop=True) # Style with orange gradient styled_stats = ( quick_stats_df_reset.style .background_gradient(cmap="Oranges", subset=["Value"]) .format({"Value": "{:.1f}"}) ) # Display styled dataframe without index st.sidebar.dataframe( styled_stats, use_container_width=False, height=240 ) # Calculate Top 10 Subjects if 'subject' in metadata_df.columns: top_subjects = ( metadata_df['subject'] .dropna() .str.split(',') .explode() .str.strip() .value_counts() .head(10) .to_frame(name="Count") ) #Most Common Subjects in Sidebar with st.sidebar.expander("Top 10 Most Common Subjects", expanded=True): st.dataframe( top_subjects.style.background_gradient(cmap="Greens").format("{:.0f}"), use_container_width=True, height=240 ) with st.sidebar.expander("Helpful Resources", expanded=False): st.markdown(""" """, unsafe_allow_html=True) # Utility functions for deeper metadata quality analysis def is_incomplete(value): return pd.isna(value) or value in ["", "N/A", "null", None] def is_valid_date(value): try: pd.to_datetime(value) return True except: return False if not metadata_df.empty: st.subheader("Retrieved Metadata Sample") st.dataframe(metadata_df.head()) # Fill the placeholder created earlier st.subheader("Field Completeness Breakdown") st.markdown("""
""", unsafe_allow_html=True) st.dataframe( completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"), use_container_width=True, height=240 ) st.markdown("
", unsafe_allow_html=True) # Identify incomplete records incomplete_mask = metadata_df.map(is_incomplete).any(axis=1) incomplete_records = metadata_df[incomplete_mask] st.subheader("Suggested Metadata Enhancements") incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()] reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()] tfidf = TfidfVectorizer(stop_words='english') if len(incomplete_with_desc) > 1 and len(reference_df) > 1: try: suggestions = [] tfidf_matrix = tfidf.fit_transform(reference_df['description']) for idx, row in incomplete_with_desc.iterrows(): if pd.isna(row['subject']) and pd.notna(row['description']): desc_vec = tfidf.transform([str(row['description'])]) sims = cosine_similarity(desc_vec, tfidf_matrix).flatten() top_idx = sims.argmax() suggested_subject = reference_df.iloc[top_idx]['subject'] if pd.notna(suggested_subject) and suggested_subject: suggestions.append((row['title'], suggested_subject)) if suggestions: suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"]) st.markdown("
" + suggestions_df.to_markdown(index=False) + "
", unsafe_allow_html=True) else: st.markdown("""
No metadata enhancement suggestions available.
""", unsafe_allow_html=True) except Exception as e: st.error(f"Error generating metadata suggestions: {e}") else: st.markdown("""
Not enough descriptive data to generate metadata suggestions.
""", unsafe_allow_html=True) else: st.warning("No metadata records found for this collection. Try selecting another one.")