# MetaDiscovery Agent - LOC API with Collection Selector and Search Endpoint + Enhanced Features import requests import pandas as pd import numpy as np import streamlit as st import plotly.express as px from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # Streamlit app header st.title("MetaDiscovery Agent for Library of Congress Collections") st.markdown(""" This tool connects to the LOC API, retrieves metadata from a selected collection, and performs an analysis of metadata completeness, suggests enhancements, and identifies authority gaps. """) # Updated collection URLs using the correct LOC API format collections = { "American Revolutionary War Maps": {"path": "maps", "query": "american+revolutionary+war"}, "Civil War Maps": {"path": "maps", "query": "civil+war"}, "Women's Suffrage": {"path": "collection", "query": "women+suffrage"}, "World War I Posters": {"path": "pictures", "query": "world+war+I+posters"} } # Sidebar for selecting collection st.sidebar.markdown("## Settings") selected = st.sidebar.selectbox("Select a collection", list(collections.keys())) collection_info = collections[selected] # Correct URL format for LOC API collection_url = f"https://www.loc.gov/{collection_info['path']}/search/?q={collection_info['query']}&fo=json" st.sidebar.write(f"Selected Collection: {selected}") st.sidebar.write(f"API URL: {collection_url}") # Fetch data from LOC API with error handling try: response = requests.get(collection_url) response.raise_for_status() # Raise exception for 4XX/5XX responses data = response.json() # Handle both possible response structures if "results" in data: records = data.get("results", []) elif "items" in data: records = data.get("items", []) else: records = [] st.error("Unexpected API response structure. No records found.") st.write(f"Retrieved {len(records)} records") except requests.exceptions.RequestException as e: st.error(f"API Connection Error: {e}") records = [] except ValueError: st.error("Failed to parse API response as JSON") records = [] # Extract selected metadata fields with proper path traversal items = [] for record in records: # Handle different possible data structures if isinstance(record, dict): # For direct field access item = { "id": record.get("id", ""), "title": record.get("title", ""), "date": record.get("date", ""), "subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""), "creator": record.get("creator", ""), "description": record.get("description", "") } # For nested field access (common in LOC API) if not item["title"] and "item" in record: item["title"] = record.get("item", {}).get("title", "") if not item["date"] and "item" in record: item["date"] = record.get("item", {}).get("date", "") items.append(item) # Create DataFrame metadata_df = pd.DataFrame(items) if not metadata_df.empty: st.subheader("📦 Retrieved Metadata Sample") st.dataframe(metadata_df.head()) # Metadata completeness analysis st.subheader("🧠 Metadata Completeness Analysis") completeness = metadata_df.notnull().mean() * 100 completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values}) # Plot completeness fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field") st.plotly_chart(fig) # List records with missing values st.subheader("⚠️ Records with Incomplete Metadata") incomplete_records = metadata_df[metadata_df.isnull().any(axis=1)] if not incomplete_records.empty: st.dataframe(incomplete_records) else: st.success("All metadata fields are complete in this collection!") # Show exact items that need updates st.subheader("📌 Identifiers of Items Needing Metadata Updates") if not incomplete_records.empty: st.write(incomplete_records[['id', 'title']]) else: st.success("All records are complete!") # Suggest metadata using text similarity with better error handling st.subheader("✨ Suggested Metadata Enhancements") # Only process if we have descriptions and enough data filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str) if len(filled_descriptions) > 1: try: tfidf = TfidfVectorizer(stop_words='english') tfidf_matrix = tfidf.fit_transform(filled_descriptions) sim_matrix = cosine_similarity(tfidf_matrix) suggestions = [] for idx, row in incomplete_records.iterrows(): if pd.isna(row['subject']) and pd.notna(row['description']): desc_vec = tfidf.transform([str(row['description'])]) sims = cosine_similarity(desc_vec, tfidf_matrix).flatten() top_idx = sims.argmax() suggested_subject = metadata_df.iloc[top_idx]['subject'] if pd.notna(suggested_subject) and suggested_subject: # Only add valid suggestions suggestions.append((row['title'], suggested_subject)) if suggestions: suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"]) st.dataframe(suggestions_df) else: st.info("No metadata enhancement suggestions available.") except Exception as e: st.error(f"Error generating metadata suggestions: {e}") else: st.info("Not enough descriptive data to generate metadata suggestions.") else: st.warning("No metadata records found for this collection. Try selecting another one.")