# MetaDiscovery Agent - LOC API with Enhanced Completeness and Quality Analysis import requests import pandas as pd import numpy as np import streamlit as st import plotly.express as px from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # Custom CSS for white background, styled sidebar, banner, and dark grey font st.markdown(""" """, unsafe_allow_html=True) # OPTION 1: Use an image from a URL for the banner st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True) # Streamlit app header st.title("MetaDiscovery Agent for Library of Congress Collections") st.markdown(""" This tool connects to the LOC API, retrieves metadata from a selected collection, and performs an analysis of metadata completeness, suggests enhancements, and identifies authority gaps. """) # Updated collection URLs using the correct LOC API format collections = { "American Revolutionary War Maps": "american+revolutionary+war+maps", "Civil War Maps": "civil+war+maps", "Women's Suffrage": "women+suffrage", "World War I Posters": "world+war+posters" } # Sidebar for selecting collection st.sidebar.markdown("## Settings") # Display Summary Statistics if available if 'metadata_df' in locals() and not metadata_df.empty: st.sidebar.markdown("### 📊 Quick Stats") st.sidebar.write(f"Total Records: {len(metadata_df)}") st.sidebar.write(f"Incomplete Records: {len(metadata_df[metadata_df.isnull().any(axis=1)])}") # Add a key to the selectbox to ensure it refreshes properly selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector") search_query = collections[selected] # Define the collection URL collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json" # Display API URL st.sidebar.write(f"Selected Collection: {selected}") st.sidebar.markdown(f"API URL: {collection_url}", unsafe_allow_html=True) # Add a fetch button to make the action explicit fetch_data = True if fetch_data: # Display a loading spinner while fetching data with st.spinner(f"Fetching data for {selected}..."): # Fetch data from LOC API with spoofed User-Agent header headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36" } try: response = requests.get(collection_url, headers=headers) response.raise_for_status() data = response.json() if "results" in data: records = data.get("results", []) elif "items" in data: records = data.get("items", []) else: records = [] st.error("Unexpected API response structure. No records found.") st.write(f"Retrieved {len(records)} records") except requests.exceptions.RequestException as e: st.error(f"API Connection Error: {e}") records = [] except ValueError: st.error("Failed to parse API response as JSON") records = [] # Extract selected metadata fields items = [] for record in records: if isinstance(record, dict): description = record.get("description", "") if isinstance(description, list): description = " ".join([str(d) for d in description]) item = { "id": record.get("id", ""), "title": record.get("title", ""), "date": record.get("date", ""), "subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""), "creator": record.get("creator", ""), "description": description } if not item["title"] and "item" in record: item["title"] = record.get("item", {}).get("title", "") if not item["date"] and "item" in record: item["date"] = record.get("item", {}).get("date", "") items.append(item) metadata_df = pd.DataFrame(items) # Utility functions for deeper metadata quality analysis def is_incomplete(value): return pd.isna(value) or value in ["", "N/A", "null", None] def is_valid_date(value): try: pd.to_datetime(value) return True except: return False if not metadata_df.empty: st.subheader("Retrieved Metadata Sample") st.dataframe(metadata_df.head()) # Metadata completeness analysis (enhanced) st.subheader("Metadata Completeness Analysis") completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100 completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values}) fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field") st.plotly_chart(fig) # Identify incomplete records incomplete_mask = metadata_df.map(is_incomplete).any(axis=1) incomplete_records = metadata_df[incomplete_mask] st.subheader("Records with Incomplete Metadata") if not incomplete_records.empty: st.dataframe(incomplete_records.astype(str)) else: st.success("All metadata fields are complete in this collection!") st.subheader("Identifiers of Items Needing Metadata Updates") if not incomplete_records.empty: st.write(incomplete_records[['id', 'title']]) else: st.success("All records are complete!") st.subheader("Suggested Metadata Enhancements") incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()] reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()] tfidf = TfidfVectorizer(stop_words='english') try: suggestions = [] tfidf_matrix = tfidf.fit_transform(reference_df['description']) for idx, row in incomplete_with_desc.iterrows(): if pd.isna(row['subject']) and pd.notna(row['description']): desc_vec = tfidf.transform([str(row['description'])]) sims = cosine_similarity(desc_vec, tfidf_matrix).flatten() top_idx = sims.argmax() suggested_subject = metadata_df.iloc[top_idx]['subject'] if pd.notna(suggested_subject) and suggested_subject: suggestions.append((row['title'], suggested_subject)) if suggestions: suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"]) st.table(suggestions_df) else: st.markdown("""