NASA-AI-Chatbot / app.py
CCockrum's picture
Update app.py
053ce9b verified
raw
history blame
2.53 kB
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY # Ensure this file exists with your NASA API Key
# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀")
# --- Ensure Session State Variables are Initialized ---
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False # Tracks whether HAL has responded
if "follow_up" not in st.session_state:
st.session_state.follow_up = "" # Stores follow-up question
if "last_topic" not in st.session_state:
st.session_state.last_topic = "" # Stores last user topic
# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN") # Hugging Face API Token
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates a concise and conversational follow-up question related to the user's input.
"""
prompt_text = (
f"Given the user's question: '{user_text}', generate a single friendly follow-up question. "
"Make it short, conversational, and natural—like a human would ask. "
"Example: If the user asks 'What is a quark?', respond with something like "
"'Would