Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from transformers import pipeline | |
from config import NASA_API_KEY # Ensure this file exists with your NASA API Key | |
# Set up Streamlit UI | |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀") | |
# --- Ensure Session State Variables are Initialized --- | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
if "response_ready" not in st.session_state: | |
st.session_state.response_ready = False # Tracks whether HAL has responded | |
if "follow_up" not in st.session_state: | |
st.session_state.follow_up = "" # Stores follow-up question | |
if "last_topic" not in st.session_state: | |
st.session_state.last_topic = "" # Stores last user topic | |
# --- Set Up Model & API Functions --- | |
model_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
# Initialize sentiment analysis pipeline | |
sentiment_analyzer = pipeline("sentiment-analysis") | |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7): | |
return HuggingFaceEndpoint( | |
repo_id=model_id, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
token=os.getenv("HF_TOKEN") # Hugging Face API Token | |
) | |
def get_nasa_apod(): | |
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
return data.get("url", ""), data.get("title", ""), data.get("explanation", "") | |
else: | |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later." | |
def analyze_sentiment(user_text): | |
result = sentiment_analyzer(user_text)[0] | |
return result['label'] | |
def predict_action(user_text): | |
if "NASA" in user_text or "space" in user_text: | |
return "nasa_info" | |
return "general_query" | |
def generate_follow_up(user_text): | |
""" | |
Generates a concise and conversational follow-up question related to the user's input. | |
""" | |
prompt_text = ( | |
f"Given the user's question: '{user_text}', generate a single friendly follow-up question. " | |
"Make it short, conversational, and natural—like a human would ask. " | |
"Example: If the user asks 'What is a quark?', respond with something like " | |
"'Would | |