NASA-AI-Chatbot / app.py
CCockrum's picture
Update app.py
ba9c3bd verified
raw
history blame
7.93 kB
import os
import re
import random
import requests
import streamlit as st
import spacy # for additional NLP processing
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
# Must be the first Streamlit command!
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
# --- Appearance Section (optional) ---
# (You can adjust CSS or appearance settings here if needed)
# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False
if "follow_up" not in st.session_state:
st.session_state.follow_up = ""
# --- Load spaCy Model for Additional NLP ---
nlp_spacy = spacy.load("en_core_web_sm")
def extract_context(text):
"""
Extract key entities from the text using spaCy to provide extra context.
Returns a comma-separated string of entities (if any).
"""
doc = nlp_spacy(text)
entities = [ent.text for ent in doc.ents]
return ", ".join(entities) if entities else ""
# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
revision="714eb0f"
)
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN"),
task="text-generation"
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={os.getenv('NASA_API_KEY')}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
if "nasa" in user_text.lower() or "space" in user_text.lower():
return "nasa_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates two variant follow-up questions and randomly selects one.
Cleans up extraneous quotation marks.
"""
prompt_text = (
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
"and another 'Would you like to explore another aspect of quantum physics?'. Do not include extra commentary."
)
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
output = hf.invoke(input=prompt_text).strip()
variants = re.split(r"\n|[;]+", output)
cleaned = [v.strip(' "\'') for v in variants if v.strip()]
if not cleaned:
cleaned = ["Would you like to explore this topic further?"]
return random.choice(cleaned)
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
"""
Generates HAL's response with a detailed explanation and a follow-up question.
Uses sentiment analysis and extracts additional context from the user's text via spaCy.
"""
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
# Extract additional context using spaCy
context_info = extract_context(user_text)
if context_info:
context_clause = f" The key topics here are: {context_info}."
else:
context_clause = ""
# Extract style instruction if present.
style_instruction = ""
lower_text = user_text.lower()
if "in the voice of" in lower_text or "speaking as" in lower_text:
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
if match:
style_instruction = match.group(2).strip().capitalize()
style_instruction = f" Please respond in the voice of {style_instruction}."
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
filtered_history = ""
for message in chat_history:
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
continue
filtered_history += f"{message['role']}: {message['content']}\n"
style_clause = style_instruction if style_instruction else ""
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Please provide a detailed, in-depth answer in a friendly, conversational tone that covers the topic thoroughly."
+ style_clause + context_clause +
"\nHAL:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.split("HAL:")[-1].strip()
if not response:
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
chat_history[-1]['content'] = response
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Chat UI ---
st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
st.experimental_rerun()
# Render the chat history.
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
user_input = st.chat_input("Type your message here...")
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True