Spaces:
Sleeping
Sleeping
| import os | |
| import re | |
| import requests | |
| import torch | |
| import streamlit as st | |
| from langchain_huggingface import HuggingFaceEndpoint | |
| from langchain_core.prompts import PromptTemplate | |
| from langchain_core.output_parsers import StrOutputParser | |
| from transformers import pipeline | |
| from langdetect import detect | |
| # β Check for GPU or Default to CPU | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"β Using device: {device}") | |
| # β Environment Variables | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if HF_TOKEN is None: | |
| raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.") | |
| NASA_API_KEY = os.getenv("NASA_API_KEY") | |
| if NASA_API_KEY is None: | |
| raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.") | |
| # β Set Up Streamlit | |
| st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π") | |
| # β Ensure Session State Variables (Maintains Chat History) | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
| if "response_ready" not in st.session_state: | |
| st.session_state.response_ready = False | |
| if "follow_up" not in st.session_state: | |
| st.session_state.follow_up = "" | |
| # β Initialize Hugging Face Model (CPU/GPU Compatible) | |
| def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.3): | |
| return HuggingFaceEndpoint( | |
| repo_id=model_id, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| token=HF_TOKEN, | |
| task="text-generation", | |
| device=-1 if device == "cpu" else 0 | |
| ) | |
| # β NASA API Function | |
| def get_nasa_apod(): | |
| url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" | |
| response = requests.get(url) | |
| if response.status_code == 200: | |
| data = response.json() | |
| return data.get("url", ""), data.get("title", ""), data.get("explanation", "") | |
| return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now." | |
| # β Sentiment Analysis (Now Uses Explicit Device) | |
| sentiment_analyzer = pipeline( | |
| "sentiment-analysis", | |
| model="distilbert/distilbert-base-uncased-finetuned-sst-2-english", | |
| device=-1 if device == "cpu" else 0 | |
| ) | |
| def analyze_sentiment(user_text): | |
| result = sentiment_analyzer(user_text)[0] | |
| return result['label'] | |
| # β Intent Detection | |
| def predict_action(user_text): | |
| if "NASA" in user_text.lower() or "space" in user_text.lower(): | |
| return "nasa_info" | |
| return "general_query" | |
| # β Ensure English Responses (Fixed Detection Error) | |
| def ensure_english(text): | |
| """Ensures the response is in English, preventing false language detection errors.""" | |
| try: | |
| detected_lang = detect(text) | |
| if detected_lang == "en": | |
| return text # β It's in English, return as-is | |
| except: | |
| pass # π₯ Ignore detection errors, assume English | |
| return "β οΈ Sorry, I only respond in English. Can you rephrase your question?" | |
| # β Follow-Up Question Generation (Ensures Proper Formatting) | |
| def generate_follow_up(user_text): | |
| """Generates a structured follow-up question in a concise format.""" | |
| prompt_text = ( | |
| f"Given the user's question: '{user_text}', generate a SHORT follow-up question in the format: " | |
| "'Would you like to learn more about [related topic] or explore something else?'. " | |
| "Ensure it's concise and structured exactly as requested without extra commentary." | |
| ) | |
| hf = get_llm_hf_inference(max_new_tokens=30, temperature=0.8) | |
| output = hf.invoke(input=prompt_text).strip() | |
| # β Extract relevant part, removing unwanted symbols | |
| cleaned_output = re.sub(r"```|''|\"", "", output).strip() | |
| if "Would you like to learn more about" not in cleaned_output: | |
| cleaned_output = "Would you like to explore another related topic or ask about something else?" | |
| return cleaned_output | |
| # β Main Response Function (Fixed History & Language Issues) | |
| def get_response(system_message, user_text, max_new_tokens=800): | |
| """Generates a response and ensures conversation history is updated.""" | |
| chat_history = st.session_state.chat_history # β Get Chat History | |
| # β Store User Input in Chat History BEFORE Generating Response | |
| chat_history.append({'role': 'user', 'content': user_text}) | |
| # β Detect Intent (NASA vs General AI chat) | |
| action = predict_action(user_text) | |
| if action == "nasa_info": | |
| nasa_url, nasa_title, nasa_explanation = get_nasa_apod() | |
| response = f"**{nasa_title}**\n\n{nasa_explanation}" | |
| follow_up = generate_follow_up(user_text) | |
| # β Append to chat history | |
| chat_history.append({'role': 'assistant', 'content': response}) | |
| chat_history.append({'role': 'assistant', 'content': follow_up}) | |
| st.session_state.chat_history = chat_history | |
| return response, follow_up, nasa_url | |
| # β Format Conversation History for Model Input | |
| formatted_chat_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history) | |
| # β Invoke Hugging Face Model | |
| hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3) | |
| prompt = PromptTemplate.from_template( | |
| "[INST] You are a helpful AI assistant.\n\nCurrent Conversation:\n{chat_history}\n\n" | |
| "User: {user_text}.\n [/INST]\n" | |
| "AI: Provide a detailed explanation with depth. Use a conversational tone." | |
| "π¨ Answer **only in English**." | |
| "\nHAL:" | |
| ) | |
| chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
| response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=formatted_chat_history)) | |
| response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip() | |
| # β Prevent False Language Errors | |
| response = ensure_english(response) | |
| if not response: | |
| response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?" | |
| follow_up = generate_follow_up(user_text) | |
| # β Append Responses to Chat History | |
| chat_history.append({'role': 'assistant', 'content': response}) | |
| chat_history.append({'role': 'assistant', 'content': follow_up}) | |
| st.session_state.chat_history = chat_history | |
| return response, follow_up, None | |
| # β Streamlit UI | |
| st.title("π HAL - NASA AI Assistant") | |
| # β Justify all chatbot responses | |
| st.markdown(""" | |
| <style> | |
| .user-msg { | |
| background-color: #696969; | |
| color: white; | |
| padding: 10px; | |
| border-radius: 10px; | |
| margin-bottom: 5px; | |
| width: fit-content; | |
| max-width: 80%; | |
| text-align: justify; /* β Justify text */ | |
| } | |
| .assistant-msg { | |
| background-color: #333333; | |
| color: white; | |
| padding: 10px; | |
| border-radius: 10px; | |
| margin-bottom: 5px; | |
| width: fit-content; | |
| max-width: 80%; | |
| text-align: justify; /* β Justify text */ | |
| } | |
| .container { | |
| display: flex; | |
| flex-direction: column; | |
| align-items: flex-start; | |
| } | |
| @media (max-width: 600px) { | |
| .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # β Display Chat History | |
| for message in st.session_state.chat_history: | |
| st.markdown(f"**{message['role'].capitalize()}**: {message['content']}") | |
| # β Chat Input | |
| user_input = st.chat_input("Type your message here...") | |
| if user_input: | |
| response, follow_up, image_url = get_response("You are a helpful AI assistant.", user_input) | |
| if response: | |
| st.markdown(f"**HAL**: {response}") | |
| if follow_up: | |
| st.markdown(f"**HAL**: {follow_up}") | |
| if image_url: | |
| st.image(image_url, caption="NASA Image of the Day") | |