Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from transformers import pipeline | |
from config import NASA_API_KEY # Ensure this file exists with your NASA API Key | |
# Set up Streamlit UI | |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀") | |
# --- Ensure Session State Variables are Initialized --- | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
if "response_ready" not in st.session_state: | |
st.session_state.response_ready = False # Tracks whether HAL has responded | |
if "follow_up" not in st.session_state: | |
st.session_state.follow_up = "" # Stores follow-up question | |
# --- Set Up Model & API Functions --- | |
model_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
# Initialize sentiment analysis pipeline with explicit model specification | |
sentiment_analyzer = pipeline( | |
"sentiment-analysis", | |
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english", | |
revision="714eb0f" | |
) | |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7): | |
# Explicitly specify task="text-generation" so that the endpoint knows which task to run | |
return HuggingFaceEndpoint( | |
repo_id=model_id, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
token=os.getenv("HF_TOKEN"), | |
task="text-generation" | |
) | |
def get_nasa_apod(): | |
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
return data.get("url", ""), data.get("title", ""), data.get("explanation", "") | |
else: | |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later." | |
def analyze_sentiment(user_text): | |
result = sentiment_analyzer(user_text)[0] | |
return result['label'] | |
def predict_action(user_text): | |
if "NASA" in user_text or "space" in user_text: | |
return "nasa_info" | |
return "general_query" | |
def generate_follow_up(user_text): | |
""" | |
Generates a concise and conversational follow-up question related to the user's input. | |
""" | |
prompt_text = ( | |
f"Given the user's question: '{user_text}', generate a SHORT and SIMPLE follow-up question. " | |
"Make it conversational and friendly. Example: 'Would you like to learn more about the six types of quarks?' " | |
"Do NOT provide long explanations—just ask a friendly follow-up question." | |
) | |
hf = get_llm_hf_inference(max_new_tokens=32, temperature=0.7) | |
return hf.invoke(input=prompt_text).strip() | |
def get_response(system_message, chat_history, user_text, max_new_tokens=256): | |
""" | |
Generates HAL's response, making it more conversational and engaging. | |
""" | |
sentiment = analyze_sentiment(user_text) | |
action = predict_action(user_text) | |
if action == "nasa_info": | |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod() | |
response = f"**{nasa_title}**\n\n{nasa_explanation}" | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': response}) | |
follow_up = generate_follow_up(user_text) | |
chat_history.append({'role': 'assistant', 'content': follow_up}) | |
return response, follow_up, chat_history, nasa_url | |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9) | |
prompt = PromptTemplate.from_template( | |
( | |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\n" | |
"AI: Keep responses conversational and engaging. Start with a friendly phrase like " | |
"'Certainly!', 'Of course!', or 'Great question!' before answering. " | |
"Keep responses concise but engaging.\nHAL:" | |
) | |
) | |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history)) | |
response = response.split("HAL:")[-1].strip() | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': response}) | |
if sentiment == "NEGATIVE": | |
response = "I'm here to help. Let me know what I can do for you. 😊" | |
follow_up = generate_follow_up(user_text) | |
chat_history.append({'role': 'assistant', 'content': follow_up}) | |
return response, follow_up, chat_history, None | |
# --- Chat UI --- | |
st.title("🚀 HAL - Your NASA AI Assistant") | |
st.markdown("🌌 *Ask me about space, NASA, and beyond!*") | |
# Sidebar: Reset Chat | |
if st.sidebar.button("Reset Chat"): | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
st.session_state.response_ready = False | |
st.session_state.follow_up = "" | |
st.experimental_rerun() | |
# Custom Chat Styling | |
st.markdown(""" | |
<style> | |
.user-msg { | |
background-color: #0078D7; | |
color: white; | |
padding: 10px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
width: fit-content; | |
max-width: 80%; | |
} | |
.assistant-msg { | |
background-color: #333333; | |
color: white; | |
padding: 10px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
width: fit-content; | |
max-width: 80%; | |
} | |
.container { | |
display: flex; | |
flex-direction: column; | |
align-items: flex-start; | |
} | |
@media (max-width: 600px) { | |
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Chat History Display | |
st.markdown("<div class='container'>", unsafe_allow_html=True) | |
for message in st.session_state.chat_history: | |
if message["role"] == "user": | |
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True) | |
else: | |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True) | |
st.markdown("</div>", unsafe_allow_html=True) | |
# --- Single Input Box for Both Initial and Follow-Up Messages --- | |
user_input = st.chat_input("Type your message here...") # Only ONE chat_input() | |
if user_input: | |
response, follow_up, st.session_state.chat_history, image_url = get_response( | |
system_message="You are a helpful AI assistant.", | |
user_text=user_input, | |
chat_history=st.session_state.chat_history | |
) | |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True) | |
if image_url: | |
st.image(image_url, caption="NASA Image of the Day") | |
st.session_state.follow_up = follow_up | |
st.session_state.response_ready = True | |
if st.session_state.response_ready and st.session_state.follow_up: | |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True) | |
st.session_state.response_ready = False | |