Spaces:
Sleeping
Sleeping
import os | |
import re | |
import random | |
import requests | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from transformers import pipeline | |
# Use environment variables for keys | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.") | |
NASA_API_KEY = os.getenv("NASA_API_KEY") | |
if NASA_API_KEY is None: | |
raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.") | |
# Set up Streamlit UI | |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π") | |
# --- Initialize Session State Variables --- | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
if "response_ready" not in st.session_state: | |
st.session_state.response_ready = False | |
if "follow_up" not in st.session_state: | |
st.session_state.follow_up = "" | |
# --- Set Up Model & API Functions --- | |
model_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
sentiment_analyzer = pipeline( | |
"sentiment-analysis", | |
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english", | |
revision="714eb0f" | |
) | |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7): | |
return HuggingFaceEndpoint( | |
repo_id=model_id, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
token=HF_TOKEN, | |
task="text-generation" | |
) | |
def get_nasa_apod(): | |
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
return data.get("url", ""), data.get("title", ""), data.get("explanation", "") | |
else: | |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later." | |
def analyze_sentiment(user_text): | |
result = sentiment_analyzer(user_text)[0] | |
return result['label'] | |
def predict_action(user_text): | |
if "NASA" in user_text or "space" in user_text: | |
return "nasa_info" | |
return "general_query" | |
def generate_follow_up(user_text): | |
""" | |
Generates two variant follow-up questions and randomly selects one. | |
It also cleans up any unwanted quotation marks or extra meta commentary. | |
""" | |
prompt_text = ( | |
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions " | |
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' " | |
"and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary ." | |
"Answer exclusively in English, and do not include extra commentary." | |
) | |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9) | |
output = hf.invoke(input=prompt_text).strip() | |
variants = re.split(r"\n|[;]+", output) | |
cleaned = [v.strip(' "\'') for v in variants if v.strip()] | |
if not cleaned: | |
cleaned = ["Would you like to explore this topic further?"] | |
return random.choice(cleaned) | |
def get_response(system_message, chat_history, user_text, max_new_tokens=512): | |
""" | |
Generates HAL's answer with depth and a follow-up question. | |
The prompt instructs the model to provide a detailed explanation and then generate a follow-up. | |
If the answer comes back empty, a fallback answer is used. | |
""" | |
sentiment = analyze_sentiment(user_text) | |
action = predict_action(user_text) | |
# Extract style instruction if present | |
style_instruction = "" | |
lower_text = user_text.lower() | |
if "in the voice of" in lower_text or "speaking as" in lower_text: | |
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text) | |
if match: | |
style_instruction = match.group(2).strip().capitalize() | |
style_instruction = f" Please respond in the voice of {style_instruction}." | |
if action == "nasa_info": | |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod() | |
response = f"**{nasa_title}**\n\n{nasa_explanation}" | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': response}) | |
follow_up = generate_follow_up(user_text) | |
chat_history.append({'role': 'assistant', 'content': follow_up}) | |
return response, follow_up, chat_history, nasa_url | |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9) | |
filtered_history = "" | |
for message in chat_history: | |
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?": | |
continue | |
filtered_history += f"{message['role']}: {message['content']}\n" | |
style_clause = style_instruction if style_instruction else "" | |
# Instruct the model to generate a detailed, in-depth answer. | |
prompt = PromptTemplate.from_template( | |
( | |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n" | |
"User: {user_text}.\n [/INST]\n" | |
"AI: Please provide a detailed explanation in depth. " | |
"Ensure your response covers the topic thoroughly and is written in a friendly, conversational style, " | |
"starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." | |
"Answer exclusively in English, and do not include extra commentary."+ style_clause + | |
"\nHAL:" | |
) | |
) | |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history)) | |
# Remove any extra markers if present. | |
response = response.split("HAL:")[-1].strip() | |
# Fallback in case the generated answer is empty | |
if not response: | |
response = "Certainly, here is an in-depth explanation: [Fallback explanation]." | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': response}) | |
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"): | |
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?" | |
chat_history[-1]['content'] = response | |
follow_up = generate_follow_up(user_text) | |
chat_history.append({'role': 'assistant', 'content': follow_up}) | |
return response, follow_up, chat_history, None | |
# --- Chat UI --- | |
st.title("π HAL - Your NASA AI Assistant") | |
st.markdown("π *Ask me about space, NASA, and beyond!*") | |
if st.sidebar.button("Reset Chat"): | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
st.session_state.response_ready = False | |
st.session_state.follow_up = "" | |
st.experimental_rerun() | |
st.markdown(""" | |
<style> | |
.user-msg { | |
background-color: #696969; | |
color: white; | |
padding: 10px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
width: fit-content; | |
max-width: 80%; | |
} | |
.assistant-msg { | |
background-color: #333333; | |
color: white; | |
padding: 10px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
width: fit-content; | |
max-width: 80%; | |
} | |
.container { | |
display: flex; | |
flex-direction: column; | |
align-items: flex-start; | |
} | |
@media (max-width: 600px) { | |
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
user_input = st.chat_input("Type your message here...") | |
if user_input: | |
response, follow_up, st.session_state.chat_history, image_url = get_response( | |
system_message="You are a helpful AI assistant.", | |
user_text=user_input, | |
chat_history=st.session_state.chat_history | |
) | |
if image_url: | |
st.image(image_url, caption="NASA Image of the Day") | |
st.session_state.follow_up = follow_up | |
st.session_state.response_ready = True | |
st.markdown("<div class='container'>", unsafe_allow_html=True) | |
for message in st.session_state.chat_history: | |
if message["role"] == "user": | |
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True) | |
else: | |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True) | |
st.markdown("</div>", unsafe_allow_html=True) |