Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
import random
|
4 |
-
import subprocess
|
5 |
import requests
|
6 |
import streamlit as st
|
7 |
-
import spacy # for additional NLP processing
|
8 |
from langchain_huggingface import HuggingFaceEndpoint
|
9 |
from langchain_core.prompts import PromptTemplate
|
10 |
from langchain_core.output_parsers import StrOutputParser
|
@@ -19,7 +17,7 @@ NASA_API_KEY = os.getenv("NASA_API_KEY")
|
|
19 |
if NASA_API_KEY is None:
|
20 |
raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
|
21 |
|
22 |
-
#
|
23 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
24 |
|
25 |
# --- Initialize Session State Variables ---
|
@@ -38,27 +36,17 @@ sentiment_analyzer = pipeline(
|
|
38 |
revision="714eb0f"
|
39 |
)
|
40 |
|
41 |
-
# --- Helper to load spaCy model with fallback ---
|
42 |
-
def load_spacy_model():
|
43 |
-
try:
|
44 |
-
return spacy.load("en_core_web_sm")
|
45 |
-
except OSError:
|
46 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
|
47 |
-
return spacy.load("en_core_web_sm")
|
48 |
-
|
49 |
-
nlp_spacy = load_spacy_model()
|
50 |
-
|
51 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
|
52 |
return HuggingFaceEndpoint(
|
53 |
repo_id=model_id,
|
54 |
max_new_tokens=max_new_tokens,
|
55 |
temperature=temperature,
|
56 |
-
token=
|
57 |
task="text-generation"
|
58 |
)
|
59 |
|
60 |
def get_nasa_apod():
|
61 |
-
url = f"https://api.nasa.gov/planetary/apod?api_key={
|
62 |
response = requests.get(url)
|
63 |
if response.status_code == 200:
|
64 |
data = response.json()
|
@@ -66,23 +54,6 @@ def get_nasa_apod():
|
|
66 |
else:
|
67 |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
|
68 |
|
69 |
-
def analyze_sentiment(user_text):
|
70 |
-
result = sentiment_analyzer(user_text)[0]
|
71 |
-
return result['label']
|
72 |
-
|
73 |
-
def predict_action(user_text):
|
74 |
-
if "nasa" in user_text.lower() or "space" in user_text.lower():
|
75 |
-
return "nasa_info"
|
76 |
-
return "general_query"
|
77 |
-
|
78 |
-
def extract_context(text):
|
79 |
-
"""
|
80 |
-
Uses spaCy to extract named entities for additional context.
|
81 |
-
"""
|
82 |
-
doc = nlp_spacy(text)
|
83 |
-
entities = [ent.text for ent in doc.ents]
|
84 |
-
return ", ".join(entities) if entities else ""
|
85 |
-
|
86 |
def is_apod_query(user_text):
|
87 |
"""
|
88 |
Checks if the user's question contains keywords indicating they are asking for
|
@@ -91,15 +62,25 @@ def is_apod_query(user_text):
|
|
91 |
keywords = ["apod", "image", "picture", "photo", "astronomy picture"]
|
92 |
return any(keyword in user_text.lower() for keyword in keywords)
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
def generate_follow_up(user_text):
|
95 |
"""
|
96 |
Generates two variant follow-up questions and randomly selects one.
|
|
|
97 |
"""
|
98 |
prompt_text = (
|
99 |
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
|
100 |
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
|
101 |
-
"and another 'Would you like to explore another aspect of quantum physics?'
|
102 |
-
"Answer exclusively in English."
|
103 |
)
|
104 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
105 |
output = hf.invoke(input=prompt_text).strip()
|
@@ -109,16 +90,25 @@ def generate_follow_up(user_text):
|
|
109 |
cleaned = ["Would you like to explore this topic further?"]
|
110 |
return random.choice(cleaned)
|
111 |
|
112 |
-
def get_response(system_message, chat_history, user_text, max_new_tokens=
|
113 |
"""
|
114 |
-
Generates HAL's
|
115 |
-
|
|
|
116 |
"""
|
117 |
sentiment = analyze_sentiment(user_text)
|
118 |
action = predict_action(user_text)
|
119 |
|
120 |
-
#
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
|
123 |
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
124 |
chat_history.append({'role': 'user', 'content': user_text})
|
@@ -126,8 +116,7 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=1024):
|
|
126 |
follow_up = generate_follow_up(user_text)
|
127 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
128 |
return response, follow_up, chat_history, nasa_url
|
129 |
-
|
130 |
-
# Otherwise, treat NASA-related queries as general queries.
|
131 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
132 |
filtered_history = ""
|
133 |
for message in chat_history:
|
@@ -135,34 +124,27 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=1024):
|
|
135 |
continue
|
136 |
filtered_history += f"{message['role']}: {message['content']}\n"
|
137 |
|
138 |
-
# Extract style instructions if provided.
|
139 |
-
style_instruction = ""
|
140 |
-
lower_text = user_text.lower()
|
141 |
-
if "in the voice of" in lower_text or "speaking as" in lower_text:
|
142 |
-
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
|
143 |
-
if match:
|
144 |
-
style_instruction = match.group(2).strip().capitalize()
|
145 |
-
style_instruction = f" Please respond in the voice of {style_instruction}."
|
146 |
-
|
147 |
-
context_info = extract_context(user_text)
|
148 |
-
context_clause = f" The key topics here are: {context_info}." if context_info else ""
|
149 |
-
language_clause = " Answer exclusively in English."
|
150 |
-
|
151 |
style_clause = style_instruction if style_instruction else ""
|
152 |
|
|
|
153 |
prompt = PromptTemplate.from_template(
|
154 |
(
|
155 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
156 |
"User: {user_text}.\n [/INST]\n"
|
157 |
-
"AI: Please provide a detailed
|
158 |
-
|
|
|
|
|
159 |
"\nHAL:"
|
160 |
)
|
161 |
)
|
162 |
|
163 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
166 |
if not response:
|
167 |
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
|
168 |
|
@@ -182,13 +164,14 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=1024):
|
|
182 |
st.title("π HAL - Your NASA AI Assistant")
|
183 |
st.markdown("π *Ask me about space, NASA, and beyond!*")
|
184 |
|
|
|
185 |
if st.sidebar.button("Reset Chat"):
|
186 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
187 |
st.session_state.response_ready = False
|
188 |
st.session_state.follow_up = ""
|
189 |
st.experimental_rerun()
|
190 |
|
191 |
-
#
|
192 |
st.markdown("""
|
193 |
<style>
|
194 |
.user-msg {
|
@@ -220,14 +203,6 @@ st.markdown("""
|
|
220 |
</style>
|
221 |
""", unsafe_allow_html=True)
|
222 |
|
223 |
-
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
224 |
-
for message in st.session_state.chat_history:
|
225 |
-
if message["role"] == "user":
|
226 |
-
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
227 |
-
else:
|
228 |
-
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
229 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
230 |
-
|
231 |
user_input = st.chat_input("Type your message here...")
|
232 |
|
233 |
if user_input:
|
@@ -240,3 +215,11 @@ if user_input:
|
|
240 |
st.image(image_url, caption="NASA Image of the Day")
|
241 |
st.session_state.follow_up = follow_up
|
242 |
st.session_state.response_ready = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import random
|
|
|
4 |
import requests
|
5 |
import streamlit as st
|
|
|
6 |
from langchain_huggingface import HuggingFaceEndpoint
|
7 |
from langchain_core.prompts import PromptTemplate
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
17 |
if NASA_API_KEY is None:
|
18 |
raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
|
19 |
|
20 |
+
# Set up Streamlit UI
|
21 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
22 |
|
23 |
# --- Initialize Session State Variables ---
|
|
|
36 |
revision="714eb0f"
|
37 |
)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
|
40 |
return HuggingFaceEndpoint(
|
41 |
repo_id=model_id,
|
42 |
max_new_tokens=max_new_tokens,
|
43 |
temperature=temperature,
|
44 |
+
token=HF_TOKEN,
|
45 |
task="text-generation"
|
46 |
)
|
47 |
|
48 |
def get_nasa_apod():
|
49 |
+
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
|
50 |
response = requests.get(url)
|
51 |
if response.status_code == 200:
|
52 |
data = response.json()
|
|
|
54 |
else:
|
55 |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def is_apod_query(user_text):
|
58 |
"""
|
59 |
Checks if the user's question contains keywords indicating they are asking for
|
|
|
62 |
keywords = ["apod", "image", "picture", "photo", "astronomy picture"]
|
63 |
return any(keyword in user_text.lower() for keyword in keywords)
|
64 |
|
65 |
+
def analyze_sentiment(user_text):
|
66 |
+
result = sentiment_analyzer(user_text)[0]
|
67 |
+
return result['label']
|
68 |
+
|
69 |
+
def predict_action(user_text):
|
70 |
+
if "NASA" in user_text or "space" in user_text:
|
71 |
+
return "nasa_info"
|
72 |
+
return "general_query"
|
73 |
+
|
74 |
def generate_follow_up(user_text):
|
75 |
"""
|
76 |
Generates two variant follow-up questions and randomly selects one.
|
77 |
+
It also cleans up any unwanted quotation marks or extra meta commentary.
|
78 |
"""
|
79 |
prompt_text = (
|
80 |
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
|
81 |
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
|
82 |
+
"and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary ."
|
83 |
+
"Answer exclusively in English, and do not include extra commentary."
|
84 |
)
|
85 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
86 |
output = hf.invoke(input=prompt_text).strip()
|
|
|
90 |
cleaned = ["Would you like to explore this topic further?"]
|
91 |
return random.choice(cleaned)
|
92 |
|
93 |
+
def get_response(system_message, chat_history, user_text, max_new_tokens=512):
|
94 |
"""
|
95 |
+
Generates HAL's answer with depth and a follow-up question.
|
96 |
+
The prompt instructs the model to provide a detailed explanation and then generate a follow-up.
|
97 |
+
If the answer comes back empty, a fallback answer is used.
|
98 |
"""
|
99 |
sentiment = analyze_sentiment(user_text)
|
100 |
action = predict_action(user_text)
|
101 |
|
102 |
+
# Extract style instruction if present
|
103 |
+
style_instruction = ""
|
104 |
+
lower_text = user_text.lower()
|
105 |
+
if "in the voice of" in lower_text or "speaking as" in lower_text:
|
106 |
+
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
|
107 |
+
if match:
|
108 |
+
style_instruction = match.group(2).strip().capitalize()
|
109 |
+
style_instruction = f" Please respond in the voice of {style_instruction}."
|
110 |
+
|
111 |
+
if action == "nasa_info":
|
112 |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
|
113 |
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
114 |
chat_history.append({'role': 'user', 'content': user_text})
|
|
|
116 |
follow_up = generate_follow_up(user_text)
|
117 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
118 |
return response, follow_up, chat_history, nasa_url
|
119 |
+
|
|
|
120 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
121 |
filtered_history = ""
|
122 |
for message in chat_history:
|
|
|
124 |
continue
|
125 |
filtered_history += f"{message['role']}: {message['content']}\n"
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
style_clause = style_instruction if style_instruction else ""
|
128 |
|
129 |
+
# Instruct the model to generate a detailed, in-depth answer.
|
130 |
prompt = PromptTemplate.from_template(
|
131 |
(
|
132 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
133 |
"User: {user_text}.\n [/INST]\n"
|
134 |
+
"AI: Please provide a detailed explanation in depth. "
|
135 |
+
"Ensure your response covers the topic thoroughly and is written in a friendly, conversational style, "
|
136 |
+
"starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'."
|
137 |
+
"Answer exclusively in English, and do not include extra commentary."+ style_clause +
|
138 |
"\nHAL:"
|
139 |
)
|
140 |
)
|
141 |
|
142 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
143 |
+
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
144 |
+
# Remove any extra markers if present.
|
145 |
+
response = response.split("HAL:")[-1].strip()
|
146 |
+
|
147 |
+
# Fallback in case the generated answer is empty
|
148 |
if not response:
|
149 |
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
|
150 |
|
|
|
164 |
st.title("π HAL - Your NASA AI Assistant")
|
165 |
st.markdown("π *Ask me about space, NASA, and beyond!*")
|
166 |
|
167 |
+
#Reset Button
|
168 |
if st.sidebar.button("Reset Chat"):
|
169 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
170 |
st.session_state.response_ready = False
|
171 |
st.session_state.follow_up = ""
|
172 |
st.experimental_rerun()
|
173 |
|
174 |
+
#Style and Appearance
|
175 |
st.markdown("""
|
176 |
<style>
|
177 |
.user-msg {
|
|
|
203 |
</style>
|
204 |
""", unsafe_allow_html=True)
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
user_input = st.chat_input("Type your message here...")
|
207 |
|
208 |
if user_input:
|
|
|
215 |
st.image(image_url, caption="NASA Image of the Day")
|
216 |
st.session_state.follow_up = follow_up
|
217 |
st.session_state.response_ready = True
|
218 |
+
|
219 |
+
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
220 |
+
for message in st.session_state.chat_history:
|
221 |
+
if message["role"] == "user":
|
222 |
+
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
223 |
+
else:
|
224 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
225 |
+
st.markdown("</div>", unsafe_allow_html=True)
|