Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,191 +4,162 @@ import streamlit as st
|
|
4 |
from langchain_huggingface import HuggingFaceEndpoint
|
5 |
from langchain_core.prompts import PromptTemplate
|
6 |
from langchain_core.output_parsers import StrOutputParser
|
7 |
-
from transformers import pipeline
|
8 |
-
from config import NASA_API_KEY #
|
9 |
|
10 |
-
# Set up Streamlit UI
|
11 |
-
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀")
|
12 |
-
|
13 |
-
# --- Ensure Session State Variables are Initialized ---
|
14 |
-
if "chat_history" not in st.session_state:
|
15 |
-
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
16 |
-
|
17 |
-
if "response_ready" not in st.session_state:
|
18 |
-
st.session_state.response_ready = False # Tracks whether HAL has responded
|
19 |
-
|
20 |
-
if "follow_up" not in st.session_state:
|
21 |
-
st.session_state.follow_up = "" # Stores follow-up question
|
22 |
-
|
23 |
-
# --- Set Up Model & API Functions ---
|
24 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
25 |
|
26 |
-
#
|
27 |
-
sentiment_analyzer = pipeline("sentiment-analysis"
|
28 |
|
29 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
30 |
-
|
31 |
-
Initializes the Hugging Face text generation model with correct settings.
|
32 |
-
"""
|
33 |
-
return HuggingFaceEndpoint(
|
34 |
repo_id=model_id,
|
35 |
-
task="text-generation", # Explicitly define the task
|
36 |
max_new_tokens=max_new_tokens,
|
37 |
temperature=temperature,
|
38 |
-
token=os.getenv("HF_TOKEN") #
|
39 |
)
|
|
|
40 |
|
41 |
def get_nasa_apod():
|
|
|
|
|
|
|
42 |
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
|
43 |
response = requests.get(url)
|
44 |
if response.status_code == 200:
|
45 |
data = response.json()
|
46 |
-
return
|
47 |
else:
|
48 |
-
return "
|
49 |
|
50 |
def analyze_sentiment(user_text):
|
|
|
|
|
|
|
51 |
result = sentiment_analyzer(user_text)[0]
|
52 |
-
|
|
|
53 |
|
54 |
def predict_action(user_text):
|
|
|
|
|
|
|
55 |
if "NASA" in user_text or "space" in user_text:
|
56 |
return "nasa_info"
|
|
|
|
|
57 |
return "general_query"
|
58 |
|
59 |
def generate_follow_up(user_text):
|
60 |
"""
|
61 |
-
Generates a
|
62 |
"""
|
63 |
prompt_text = (
|
64 |
-
f"Given the user's
|
65 |
-
"
|
66 |
-
"'Would you like to learn more about the six types of quarks?' "
|
67 |
-
"Do NOT provide long explanations—just ask a friendly follow-up question."
|
68 |
)
|
69 |
|
70 |
-
hf = get_llm_hf_inference(max_new_tokens=
|
71 |
-
|
|
|
|
|
72 |
|
73 |
-
def get_response(system_message, chat_history, user_text,
|
74 |
-
|
75 |
-
Generates HAL's response, making it more conversational and engaging.
|
76 |
-
"""
|
77 |
sentiment = analyze_sentiment(user_text)
|
78 |
action = predict_action(user_text)
|
79 |
|
80 |
if action == "nasa_info":
|
81 |
-
|
82 |
-
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
83 |
chat_history.append({'role': 'user', 'content': user_text})
|
84 |
-
chat_history.append({'role': 'assistant', 'content':
|
85 |
|
86 |
follow_up = generate_follow_up(user_text)
|
87 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
88 |
-
return
|
89 |
|
90 |
-
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.
|
91 |
|
92 |
prompt = PromptTemplate.from_template(
|
93 |
(
|
94 |
"[INST] {system_message}"
|
95 |
"\nCurrent Conversation:\n{chat_history}\n\n"
|
96 |
"\nUser: {user_text}.\n [/INST]"
|
97 |
-
"\nAI:
|
98 |
-
"'Certainly!', 'Of course!', or 'Great question!' before answering."
|
99 |
-
" Keep responses concise but engaging."
|
100 |
-
"\nHAL:"
|
101 |
)
|
102 |
)
|
103 |
-
|
104 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
105 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
|
106 |
-
response = response.split("
|
107 |
|
108 |
chat_history.append({'role': 'user', 'content': user_text})
|
109 |
chat_history.append({'role': 'assistant', 'content': response})
|
110 |
|
|
|
111 |
if sentiment == "NEGATIVE":
|
112 |
-
response
|
113 |
|
114 |
follow_up = generate_follow_up(user_text)
|
115 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
116 |
|
117 |
-
return response
|
118 |
|
119 |
-
#
|
120 |
-
st.
|
121 |
-
st.
|
|
|
122 |
|
123 |
-
#
|
|
|
|
|
|
|
|
|
124 |
if st.sidebar.button("Reset Chat"):
|
125 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
126 |
-
st.session_state.response_ready = False
|
127 |
-
st.session_state.follow_up = ""
|
128 |
-
st.experimental_rerun()
|
129 |
-
|
130 |
-
# Custom Chat Styling
|
131 |
-
st.markdown("""
|
132 |
-
<style>
|
133 |
-
.user-msg {
|
134 |
-
background-color: #0078D7;
|
135 |
-
color: white;
|
136 |
-
padding: 10px;
|
137 |
-
border-radius: 10px;
|
138 |
-
margin-bottom: 5px;
|
139 |
-
width: fit-content;
|
140 |
-
max-width: 80%;
|
141 |
-
}
|
142 |
-
.assistant-msg {
|
143 |
-
background-color: #333333;
|
144 |
-
color: white;
|
145 |
-
padding: 10px;
|
146 |
-
border-radius: 10px;
|
147 |
-
margin-bottom: 5px;
|
148 |
-
width: fit-content;
|
149 |
-
max-width: 80%;
|
150 |
-
}
|
151 |
-
.container {
|
152 |
-
display: flex;
|
153 |
-
flex-direction: column;
|
154 |
-
align-items: flex-start;
|
155 |
-
}
|
156 |
-
@media (max-width: 600px) {
|
157 |
-
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
|
158 |
-
}
|
159 |
-
</style>
|
160 |
-
""", unsafe_allow_html=True)
|
161 |
-
|
162 |
-
# Chat History Display
|
163 |
-
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
164 |
-
for message in st.session_state.chat_history:
|
165 |
-
if message["role"] == "user":
|
166 |
-
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
167 |
-
else:
|
168 |
-
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
169 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
170 |
-
|
171 |
-
# --- Single Input Box for Both Initial and Follow-Up Messages ---
|
172 |
-
user_input = st.chat_input("Type your message here...") # Only ONE chat_input()
|
173 |
|
|
|
|
|
174 |
if user_input:
|
175 |
-
response,
|
176 |
system_message="You are a helpful AI assistant.",
|
177 |
user_text=user_input,
|
178 |
-
chat_history=st.session_state.chat_history
|
|
|
179 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
|
|
|
|
|
182 |
|
183 |
-
|
184 |
-
|
|
|
185 |
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
# Display follow-up question inside chat if available
|
190 |
-
if st.session_state.response_ready and st.session_state.follow_up:
|
191 |
-
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
|
192 |
|
193 |
-
# Reset response state so user can type next input
|
194 |
-
st.session_state.response_ready = False
|
|
|
4 |
from langchain_huggingface import HuggingFaceEndpoint
|
5 |
from langchain_core.prompts import PromptTemplate
|
6 |
from langchain_core.output_parsers import StrOutputParser
|
7 |
+
from transformers import pipeline # for Sentiment Analysis
|
8 |
+
from config import NASA_API_KEY # Import the NASA API key from the configuration file
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
11 |
|
12 |
+
# Initialize sentiment analysis pipeline
|
13 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
14 |
|
15 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
16 |
+
llm = HuggingFaceEndpoint(
|
|
|
|
|
|
|
17 |
repo_id=model_id,
|
|
|
18 |
max_new_tokens=max_new_tokens,
|
19 |
temperature=temperature,
|
20 |
+
token=os.getenv("HF_TOKEN") # Hugging Face token from environment variable
|
21 |
)
|
22 |
+
return llm
|
23 |
|
24 |
def get_nasa_apod():
|
25 |
+
"""
|
26 |
+
Fetch the Astronomy Picture of the Day (APOD) from the NASA API.
|
27 |
+
"""
|
28 |
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
|
29 |
response = requests.get(url)
|
30 |
if response.status_code == 200:
|
31 |
data = response.json()
|
32 |
+
return f"Title: {data['title']}\nExplanation: {data['explanation']}\nURL: {data['url']}"
|
33 |
else:
|
34 |
+
return "I couldn't fetch data from NASA right now. Please try again later."
|
35 |
|
36 |
def analyze_sentiment(user_text):
|
37 |
+
"""
|
38 |
+
Analyzes the sentiment of the user's input to adjust responses.
|
39 |
+
"""
|
40 |
result = sentiment_analyzer(user_text)[0]
|
41 |
+
sentiment = result['label']
|
42 |
+
return sentiment
|
43 |
|
44 |
def predict_action(user_text):
|
45 |
+
"""
|
46 |
+
Predicts actions based on user input (e.g., fetch space info or general knowledge).
|
47 |
+
"""
|
48 |
if "NASA" in user_text or "space" in user_text:
|
49 |
return "nasa_info"
|
50 |
+
if "weather" in user_text:
|
51 |
+
return "weather_info"
|
52 |
return "general_query"
|
53 |
|
54 |
def generate_follow_up(user_text):
|
55 |
"""
|
56 |
+
Generates a relevant follow-up question based on the user's input.
|
57 |
"""
|
58 |
prompt_text = (
|
59 |
+
f"Given the user's message: '{user_text}', ask one natural follow-up question "
|
60 |
+
"that suggests a related topic or offers user the opportunity to go in a new direction."
|
|
|
|
|
61 |
)
|
62 |
|
63 |
+
hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
|
64 |
+
chat = hf.invoke(input=prompt_text)
|
65 |
+
|
66 |
+
return chat.strip()
|
67 |
|
68 |
+
def get_response(system_message, chat_history, user_text,
|
69 |
+
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
|
|
|
|
|
70 |
sentiment = analyze_sentiment(user_text)
|
71 |
action = predict_action(user_text)
|
72 |
|
73 |
if action == "nasa_info":
|
74 |
+
nasa_response = get_nasa_apod()
|
|
|
75 |
chat_history.append({'role': 'user', 'content': user_text})
|
76 |
+
chat_history.append({'role': 'assistant', 'content': nasa_response})
|
77 |
|
78 |
follow_up = generate_follow_up(user_text)
|
79 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
80 |
+
return f"{nasa_response}\n\n{follow_up}", chat_history
|
81 |
|
82 |
+
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
|
83 |
|
84 |
prompt = PromptTemplate.from_template(
|
85 |
(
|
86 |
"[INST] {system_message}"
|
87 |
"\nCurrent Conversation:\n{chat_history}\n\n"
|
88 |
"\nUser: {user_text}.\n [/INST]"
|
89 |
+
"\nAI:"
|
|
|
|
|
|
|
90 |
)
|
91 |
)
|
|
|
92 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
93 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
|
94 |
+
response = response.split("AI:")[-1]
|
95 |
|
96 |
chat_history.append({'role': 'user', 'content': user_text})
|
97 |
chat_history.append({'role': 'assistant', 'content': response})
|
98 |
|
99 |
+
# Modify response based on sentiment analysis (e.g., offer help for negative sentiments)
|
100 |
if sentiment == "NEGATIVE":
|
101 |
+
response += "\nI'm sorry to hear that. How can I assist you further?"
|
102 |
|
103 |
follow_up = generate_follow_up(user_text)
|
104 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
105 |
|
106 |
+
return f"{response}\n\n{follow_up}", chat_history
|
107 |
|
108 |
+
# Streamlit setup
|
109 |
+
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
|
110 |
+
st.title("NASA Personal Assistant")
|
111 |
+
st.markdown(f"*This chatbot uses {model_id} and NASA's APIs to provide information and responses.*")
|
112 |
|
113 |
+
# Initialize session state
|
114 |
+
if "chat_history" not in st.session_state:
|
115 |
+
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
116 |
+
|
117 |
+
# Sidebar for settings
|
118 |
if st.sidebar.button("Reset Chat"):
|
119 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Main chat interface
|
122 |
+
user_input = st.chat_input(placeholder="Type your message here...")
|
123 |
if user_input:
|
124 |
+
response, st.session_state.chat_history = get_response(
|
125 |
system_message="You are a helpful AI assistant.",
|
126 |
user_text=user_input,
|
127 |
+
chat_history=st.session_state.chat_history,
|
128 |
+
max_new_tokens=128
|
129 |
)
|
130 |
+
# Display messages
|
131 |
+
for message in st.session_state.chat_history:
|
132 |
+
st.chat_message(message["role"]).write(message["content"])
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
if st.button("Send"):
|
138 |
+
if user_input:
|
139 |
+
response, follow_up, st.session_state.chat_history, image_url = get_response(
|
140 |
+
system_message="You are a helpful AI assistant.",
|
141 |
+
user_text=user_input,
|
142 |
+
chat_history=st.session_state.chat_history
|
143 |
+
)
|
144 |
+
|
145 |
+
# Display response
|
146 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
147 |
|
148 |
+
# Display NASA image if available
|
149 |
+
if image_url:
|
150 |
+
st.image(image_url, caption="NASA Image of the Day")
|
151 |
|
152 |
+
# Follow-up question suggestions
|
153 |
+
follow_up_options = [follow_up, "Explain differently", "Give me an example"]
|
154 |
+
selected_option = st.radio("What would you like to do next?", follow_up_options)
|
155 |
|
156 |
+
if st.button("Continue"):
|
157 |
+
if selected_option:
|
158 |
+
response, _, st.session_state.chat_history, _ = get_response(
|
159 |
+
system_message="You are a helpful AI assistant.",
|
160 |
+
user_text=selected_option,
|
161 |
+
chat_history=st.session_state.chat_history
|
162 |
+
)
|
163 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
164 |
|
|
|
|
|
|
|
165 |
|
|
|
|