Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,21 +7,21 @@ from langchain_huggingface import HuggingFaceEndpoint
|
|
7 |
from langchain_core.prompts import PromptTemplate
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from transformers import pipeline
|
10 |
-
from langdetect import detect
|
11 |
|
12 |
-
#
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
if HF_TOKEN is None:
|
15 |
-
raise ValueError("HF_TOKEN
|
16 |
|
17 |
NASA_API_KEY = os.getenv("NASA_API_KEY")
|
18 |
if NASA_API_KEY is None:
|
19 |
-
raise ValueError("NASA_API_KEY
|
20 |
|
21 |
-
# Set
|
22 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
23 |
|
24 |
-
#
|
25 |
if "chat_history" not in st.session_state:
|
26 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
27 |
if "response_ready" not in st.session_state:
|
@@ -29,14 +29,10 @@ if "response_ready" not in st.session_state:
|
|
29 |
if "follow_up" not in st.session_state:
|
30 |
st.session_state.follow_up = ""
|
31 |
|
32 |
-
#
|
33 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
34 |
-
sentiment_analyzer = pipeline(
|
35 |
-
"sentiment-analysis",
|
36 |
-
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
|
37 |
-
revision="714eb0f"
|
38 |
-
)
|
39 |
|
|
|
40 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
|
41 |
return HuggingFaceEndpoint(
|
42 |
repo_id=model_id,
|
@@ -46,62 +42,40 @@ def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7)
|
|
46 |
task="text-generation"
|
47 |
)
|
48 |
|
|
|
49 |
def get_nasa_apod():
|
50 |
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
|
51 |
response = requests.get(url)
|
52 |
if response.status_code == 200:
|
53 |
data = response.json()
|
54 |
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def analyze_sentiment(user_text):
|
59 |
result = sentiment_analyzer(user_text)[0]
|
60 |
return result['label']
|
61 |
|
62 |
-
|
63 |
-
"""
|
64 |
-
Checks if the user's question contains keywords indicating they are asking for
|
65 |
-
the Astronomy Picture of the Day.
|
66 |
-
"""
|
67 |
-
keywords = ["apod", "image", "picture", "photo", "astronomy picture"]
|
68 |
-
return any(keyword in user_text.lower() for keyword in keywords)
|
69 |
-
|
70 |
def predict_action(user_text):
|
71 |
-
"""
|
72 |
-
|
73 |
-
If the query contains "NASA" or "space" and also indicates an APOD query,
|
74 |
-
it returns "nasa_info". Otherwise, it returns "general_query", even if "NASA" is present.
|
75 |
-
"""
|
76 |
-
user_text_lower = user_text.lower()
|
77 |
-
if "nasa" in user_text_lower or "space" in user_text_lower:
|
78 |
-
if is_apod_query(user_text):
|
79 |
-
return "nasa_info"
|
80 |
return "general_query"
|
81 |
|
|
|
82 |
def generate_follow_up(user_text):
|
83 |
-
""
|
84 |
-
Generates two variant follow-up questions and randomly selects one.
|
85 |
-
It also cleans up any unwanted quotation marks or extra meta commentary.
|
86 |
-
"""
|
87 |
-
prompt_text = (
|
88 |
-
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
|
89 |
-
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
|
90 |
-
"and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary ."
|
91 |
-
"Answer exclusively in English, and do not include extra commentary."
|
92 |
-
)
|
93 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
94 |
output = hf.invoke(input=prompt_text).strip()
|
95 |
-
|
96 |
-
cleaned = [v.strip(' "\'') for v in variants if v.strip()]
|
97 |
-
if not cleaned:
|
98 |
-
cleaned = ["Would you like to explore this topic further?"]
|
99 |
-
return random.choice(cleaned)
|
100 |
-
|
101 |
-
from langdetect import detect
|
102 |
|
|
|
103 |
def ensure_english(text):
|
104 |
-
"""Check if the model accidentally generated a non-English response."""
|
105 |
try:
|
106 |
detected_lang = detect(text)
|
107 |
if detected_lang != "en":
|
@@ -110,26 +84,11 @@ def ensure_english(text):
|
|
110 |
return "β οΈ Language detection failed. Please ask your question again."
|
111 |
return text
|
112 |
|
|
|
113 |
def get_response(system_message, chat_history, user_text, max_new_tokens=512):
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
If the answer comes back empty, a fallback answer is used.
|
118 |
-
"""
|
119 |
-
|
120 |
-
# π Determine the user's intent (NASA Info or General Query)
|
121 |
-
action = predict_action(user_text) # π₯ Define 'action' here
|
122 |
-
|
123 |
-
# Extract style instruction if present
|
124 |
-
style_instruction = ""
|
125 |
-
lower_text = user_text.lower()
|
126 |
-
if "in the voice of" in lower_text or "speaking as" in lower_text:
|
127 |
-
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
|
128 |
-
if match:
|
129 |
-
style_instruction = match.group(2).strip().capitalize()
|
130 |
-
style_instruction = f" Please respond in the voice of {style_instruction}."
|
131 |
-
|
132 |
-
# π Handle NASA-specific queries
|
133 |
if action == "nasa_info":
|
134 |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
|
135 |
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
@@ -139,84 +98,53 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=512):
|
|
139 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
140 |
return response, follow_up, chat_history, nasa_url
|
141 |
|
|
|
142 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
143 |
-
filtered_history = ""
|
144 |
-
for message in chat_history:
|
145 |
-
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
|
146 |
-
continue
|
147 |
-
filtered_history += f"{message['role']}: {message['content']}\n"
|
148 |
|
149 |
-
|
|
|
150 |
|
151 |
-
#
|
152 |
prompt = PromptTemplate.from_template(
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
"π¨ IMPORTANT: Answer exclusively in **English only**. Do not generate responses in any other language."
|
160 |
-
"\nHAL:"
|
161 |
-
)
|
162 |
)
|
163 |
|
|
|
164 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
165 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
166 |
response = response.split("HAL:")[-1].strip()
|
167 |
|
168 |
-
#
|
169 |
response = ensure_english(response)
|
170 |
|
171 |
-
# Fallback
|
172 |
-
if not response:
|
173 |
-
|
174 |
|
|
|
|
|
175 |
|
|
|
|
|
176 |
|
177 |
-
|
178 |
-
|
|
|
|
|
179 |
st.markdown("π *Ask me about space, NASA, and beyond!*")
|
180 |
|
181 |
-
#Reset Button
|
182 |
if st.sidebar.button("Reset Chat"):
|
183 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
184 |
st.session_state.response_ready = False
|
185 |
st.session_state.follow_up = ""
|
186 |
-
st.experimental_rerun()
|
187 |
-
|
188 |
-
#Style and Appearance
|
189 |
-
st.markdown("""
|
190 |
-
<style>
|
191 |
-
.user-msg {
|
192 |
-
background-color: #696969;
|
193 |
-
color: white;
|
194 |
-
padding: 10px;
|
195 |
-
border-radius: 10px;
|
196 |
-
margin-bottom: 5px;
|
197 |
-
width: fit-content;
|
198 |
-
max-width: 80%;
|
199 |
-
}
|
200 |
-
.assistant-msg {
|
201 |
-
background-color: #333333;
|
202 |
-
color: white;
|
203 |
-
padding: 10px;
|
204 |
-
border-radius: 10px;
|
205 |
-
margin-bottom: 5px;
|
206 |
-
width: fit-content;
|
207 |
-
max-width: 80%;
|
208 |
-
}
|
209 |
-
.container {
|
210 |
-
display: flex;
|
211 |
-
flex-direction: column;
|
212 |
-
align-items: flex-start;
|
213 |
-
}
|
214 |
-
@media (max-width: 600px) {
|
215 |
-
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
|
216 |
-
}
|
217 |
-
</style>
|
218 |
-
""", unsafe_allow_html=True)
|
219 |
|
|
|
220 |
user_input = st.chat_input("Type your message here...")
|
221 |
|
222 |
if user_input:
|
@@ -227,13 +155,10 @@ if user_input:
|
|
227 |
)
|
228 |
if image_url:
|
229 |
st.image(image_url, caption="NASA Image of the Day")
|
|
|
230 |
st.session_state.follow_up = follow_up
|
231 |
st.session_state.response_ready = True
|
232 |
|
233 |
-
st.
|
234 |
-
|
235 |
-
|
236 |
-
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
237 |
-
else:
|
238 |
-
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
239 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
|
|
7 |
from langchain_core.prompts import PromptTemplate
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from transformers import pipeline
|
10 |
+
from langdetect import detect # Ensure this package is installed
|
11 |
|
12 |
+
# β
Environment Variables
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
if HF_TOKEN is None:
|
15 |
+
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
|
16 |
|
17 |
NASA_API_KEY = os.getenv("NASA_API_KEY")
|
18 |
if NASA_API_KEY is None:
|
19 |
+
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
|
20 |
|
21 |
+
# β
Set Up Streamlit
|
22 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
23 |
|
24 |
+
# β
Ensure Session State Variables
|
25 |
if "chat_history" not in st.session_state:
|
26 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
27 |
if "response_ready" not in st.session_state:
|
|
|
29 |
if "follow_up" not in st.session_state:
|
30 |
st.session_state.follow_up = ""
|
31 |
|
32 |
+
# β
Model Configuration
|
33 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# β
Initialize Hugging Face Model
|
36 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
|
37 |
return HuggingFaceEndpoint(
|
38 |
repo_id=model_id,
|
|
|
42 |
task="text-generation"
|
43 |
)
|
44 |
|
45 |
+
# β
NASA API Function
|
46 |
def get_nasa_apod():
|
47 |
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
|
48 |
response = requests.get(url)
|
49 |
if response.status_code == 200:
|
50 |
data = response.json()
|
51 |
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
|
52 |
+
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
|
53 |
+
|
54 |
+
# β
Sentiment Analysis
|
55 |
+
sentiment_analyzer = pipeline(
|
56 |
+
"sentiment-analysis",
|
57 |
+
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english"
|
58 |
+
)
|
59 |
|
60 |
def analyze_sentiment(user_text):
|
61 |
result = sentiment_analyzer(user_text)[0]
|
62 |
return result['label']
|
63 |
|
64 |
+
# β
Intent Detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def predict_action(user_text):
|
66 |
+
if "NASA" in user_text or "space" in user_text:
|
67 |
+
return "nasa_info"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
return "general_query"
|
69 |
|
70 |
+
# β
Follow-Up Question Generation
|
71 |
def generate_follow_up(user_text):
|
72 |
+
prompt_text = f"Based on: '{user_text}', generate a concise, friendly follow-up."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
74 |
output = hf.invoke(input=prompt_text).strip()
|
75 |
+
return output if output else "Would you like to explore this topic further?"
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# β
Ensure English Responses
|
78 |
def ensure_english(text):
|
|
|
79 |
try:
|
80 |
detected_lang = detect(text)
|
81 |
if detected_lang != "en":
|
|
|
84 |
return "β οΈ Language detection failed. Please ask your question again."
|
85 |
return text
|
86 |
|
87 |
+
# β
Main Response Function
|
88 |
def get_response(system_message, chat_history, user_text, max_new_tokens=512):
|
89 |
+
action = predict_action(user_text) # π₯ Fix: Define 'action'
|
90 |
+
|
91 |
+
# β
Handle NASA-Specific Queries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
if action == "nasa_info":
|
93 |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
|
94 |
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
|
|
98 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
99 |
return response, follow_up, chat_history, nasa_url
|
100 |
|
101 |
+
# β
Set Up LLM Request
|
102 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
# β
Format Chat History
|
105 |
+
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
106 |
|
107 |
+
# β
Prompt Engineering
|
108 |
prompt = PromptTemplate.from_template(
|
109 |
+
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
110 |
+
"User: {user_text}.\n [/INST]\n"
|
111 |
+
"AI: Provide a detailed explanation with depth. "
|
112 |
+
"Use a conversational style, starting with 'Certainly!', 'Of course!', or 'Great question!'."
|
113 |
+
"π¨ Answer **only in English**."
|
114 |
+
"\nHAL:"
|
|
|
|
|
|
|
115 |
)
|
116 |
|
117 |
+
# β
Invoke LLM Model
|
118 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
119 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
120 |
response = response.split("HAL:")[-1].strip()
|
121 |
|
122 |
+
# β
Ensure English
|
123 |
response = ensure_english(response)
|
124 |
|
125 |
+
# β
Fallback Response
|
126 |
+
if not response:
|
127 |
+
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
|
128 |
|
129 |
+
chat_history.append({'role': 'user', 'content': user_text})
|
130 |
+
chat_history.append({'role': 'assistant', 'content': response})
|
131 |
|
132 |
+
follow_up = generate_follow_up(user_text)
|
133 |
+
chat_history.append({'role': 'assistant', 'content': follow_up})
|
134 |
|
135 |
+
return response, follow_up, chat_history, None
|
136 |
+
|
137 |
+
# β
Streamlit UI
|
138 |
+
st.title("π HAL - NASA AI Assistant")
|
139 |
st.markdown("π *Ask me about space, NASA, and beyond!*")
|
140 |
|
141 |
+
# β
Reset Chat Button
|
142 |
if st.sidebar.button("Reset Chat"):
|
143 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
144 |
st.session_state.response_ready = False
|
145 |
st.session_state.follow_up = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
# β
Chat UI
|
148 |
user_input = st.chat_input("Type your message here...")
|
149 |
|
150 |
if user_input:
|
|
|
155 |
)
|
156 |
if image_url:
|
157 |
st.image(image_url, caption="NASA Image of the Day")
|
158 |
+
|
159 |
st.session_state.follow_up = follow_up
|
160 |
st.session_state.response_ready = True
|
161 |
|
162 |
+
if st.session_state.response_ready and st.session_state.follow_up:
|
163 |
+
st.write(f"**HAL:** {st.session_state.follow_up}")
|
164 |
+
st.session_state.response_ready = False
|
|
|
|
|
|
|
|