Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,32 +11,29 @@ from langdetect import detect # Ensure this package is installed
|
|
11 |
|
12 |
# β
Environment Variables
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
-
|
15 |
-
|
16 |
-
if not HF_TOKEN:
|
17 |
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
|
18 |
|
19 |
-
|
|
|
20 |
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
|
21 |
|
22 |
# β
Set Up Streamlit
|
23 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
24 |
|
25 |
-
# β
Ensure Session State Variables
|
26 |
if "chat_history" not in st.session_state:
|
27 |
-
st.session_state.chat_history = []
|
28 |
-
|
29 |
if "response_ready" not in st.session_state:
|
30 |
st.session_state.response_ready = False
|
31 |
-
|
32 |
if "follow_up" not in st.session_state:
|
33 |
st.session_state.follow_up = ""
|
34 |
|
35 |
# β
Model Configuration
|
36 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
37 |
|
38 |
-
# β
Initialize Hugging Face Model
|
39 |
-
def get_llm_hf_inference(model_id=model_id, max_new_tokens=
|
40 |
return HuggingFaceEndpoint(
|
41 |
repo_id=model_id,
|
42 |
max_new_tokens=max_new_tokens,
|
@@ -55,8 +52,10 @@ def get_nasa_apod():
|
|
55 |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
|
56 |
|
57 |
# β
Sentiment Analysis
|
58 |
-
sentiment_analyzer = pipeline(
|
59 |
-
|
|
|
|
|
60 |
|
61 |
def analyze_sentiment(user_text):
|
62 |
result = sentiment_analyzer(user_text)[0]
|
@@ -68,5 +67,161 @@ def predict_action(user_text):
|
|
68 |
return "nasa_info"
|
69 |
return "general_query"
|
70 |
|
71 |
-
# β
|
72 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# β
Environment Variables
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
+
if HF_TOKEN is None:
|
|
|
|
|
15 |
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
|
16 |
|
17 |
+
NASA_API_KEY = os.getenv("NASA_API_KEY")
|
18 |
+
if NASA_API_KEY is None:
|
19 |
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
|
20 |
|
21 |
# β
Set Up Streamlit
|
22 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
23 |
|
24 |
+
# β
Ensure Session State Variables
|
25 |
if "chat_history" not in st.session_state:
|
26 |
+
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
|
|
27 |
if "response_ready" not in st.session_state:
|
28 |
st.session_state.response_ready = False
|
|
|
29 |
if "follow_up" not in st.session_state:
|
30 |
st.session_state.follow_up = ""
|
31 |
|
32 |
# β
Model Configuration
|
33 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
34 |
|
35 |
+
# β
Initialize Hugging Face Model
|
36 |
+
def get_llm_hf_inference(model_id=model_id, max_new_tokens=1024, temperature=0.7):
|
37 |
return HuggingFaceEndpoint(
|
38 |
repo_id=model_id,
|
39 |
max_new_tokens=max_new_tokens,
|
|
|
52 |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
|
53 |
|
54 |
# β
Sentiment Analysis
|
55 |
+
sentiment_analyzer = pipeline(
|
56 |
+
"sentiment-analysis",
|
57 |
+
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english"
|
58 |
+
)
|
59 |
|
60 |
def analyze_sentiment(user_text):
|
61 |
result = sentiment_analyzer(user_text)[0]
|
|
|
67 |
return "nasa_info"
|
68 |
return "general_query"
|
69 |
|
70 |
+
# β
Follow-Up Question Generation
|
71 |
+
def generate_follow_up(user_text):
|
72 |
+
prompt_text = f"Based on: '{user_text}', generate a concise, friendly follow-up."
|
73 |
+
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
74 |
+
output = hf.invoke(input=prompt_text).strip()
|
75 |
+
return output if output else "Would you like to explore this topic further?"
|
76 |
+
|
77 |
+
# β
Ensure English Responses
|
78 |
+
def ensure_english(text):
|
79 |
+
try:
|
80 |
+
detected_lang = detect(text)
|
81 |
+
if detected_lang != "en":
|
82 |
+
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?"
|
83 |
+
except:
|
84 |
+
return "β οΈ Language detection failed. Please ask your question again."
|
85 |
+
return text
|
86 |
+
|
87 |
+
# β
Ensure Every Response Has a Follow-Up Question
|
88 |
+
def generate_follow_up(user_text):
|
89 |
+
"""Generates a follow-up question to guide the user toward related topics or next steps."""
|
90 |
+
prompt_text = (
|
91 |
+
f"Given the user's question: '{user_text}', generate a SHORT follow-up question "
|
92 |
+
"suggesting either a related topic or asking if they need further help. "
|
93 |
+
"Example: 'Would you like to explore quantum superposition or ask about another physics concept?' "
|
94 |
+
"Keep it concise and engaging."
|
95 |
+
)
|
96 |
+
hf = get_llm_hf_inference(max_new_tokens=40, temperature=0.8)
|
97 |
+
output = hf.invoke(input=prompt_text).strip()
|
98 |
+
|
99 |
+
# Fallback in case of an empty response
|
100 |
+
return output if output else "Would you like to explore another related topic or ask about something else?"
|
101 |
+
|
102 |
+
# β
Main Response Function
|
103 |
+
def get_response(system_message, chat_history, user_text, max_new_tokens=512):
|
104 |
+
action = predict_action(user_text) # π₯ Fix: Define 'action'
|
105 |
+
|
106 |
+
# β
Handle NASA-Specific Queries
|
107 |
+
if action == "nasa_info":
|
108 |
+
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
|
109 |
+
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
110 |
+
chat_history.append({'role': 'user', 'content': user_text})
|
111 |
+
chat_history.append({'role': 'assistant', 'content': response})
|
112 |
+
follow_up = generate_follow_up(user_text)
|
113 |
+
chat_history.append({'role': 'assistant', 'content': follow_up})
|
114 |
+
return response, follow_up, chat_history, nasa_url
|
115 |
+
|
116 |
+
# β
Set Up LLM Request
|
117 |
+
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
118 |
+
|
119 |
+
# β
Format Chat History
|
120 |
+
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
121 |
+
|
122 |
+
# β
Prompt Engineering
|
123 |
+
prompt = PromptTemplate.from_template(
|
124 |
+
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
125 |
+
"User: {user_text}.\n [/INST]\n"
|
126 |
+
"AI: Provide a detailed explanation with depth. "
|
127 |
+
"Use a conversational style, starting with 'Certainly!', 'Of course!', or 'Great question!'."
|
128 |
+
"π¨ Answer **only in English**."
|
129 |
+
"\nHAL:"
|
130 |
+
)
|
131 |
+
|
132 |
+
# β
Invoke LLM Model
|
133 |
+
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
134 |
+
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
135 |
+
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
|
136 |
+
|
137 |
+
# β
Ensure English
|
138 |
+
response = ensure_english(response)
|
139 |
+
|
140 |
+
# β
Fallback Response
|
141 |
+
if not response:
|
142 |
+
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
|
143 |
+
|
144 |
+
chat_history.append({'role': 'user', 'content': user_text})
|
145 |
+
chat_history.append({'role': 'assistant', 'content': response})
|
146 |
+
|
147 |
+
follow_up = generate_follow_up(user_text)
|
148 |
+
chat_history.append({'role': 'assistant', 'content': follow_up})
|
149 |
+
|
150 |
+
return response, follow_up, chat_history, None
|
151 |
+
|
152 |
+
# β
Streamlit UI
|
153 |
+
st.title("π HAL - NASA AI Assistant")
|
154 |
+
|
155 |
+
# β
Justify all chatbot responses
|
156 |
+
st.markdown("""
|
157 |
+
<style>
|
158 |
+
.user-msg {
|
159 |
+
background-color: #696969;
|
160 |
+
color: white;
|
161 |
+
padding: 10px;
|
162 |
+
border-radius: 10px;
|
163 |
+
margin-bottom: 5px;
|
164 |
+
width: fit-content;
|
165 |
+
max-width: 80%;
|
166 |
+
text-align: justify; /* β
Justify text */
|
167 |
+
}
|
168 |
+
.assistant-msg {
|
169 |
+
background-color: #333333;
|
170 |
+
color: white;
|
171 |
+
padding: 10px;
|
172 |
+
border-radius: 10px;
|
173 |
+
margin-bottom: 5px;
|
174 |
+
width: fit-content;
|
175 |
+
max-width: 80%;
|
176 |
+
text-align: justify; /* β
Justify text */
|
177 |
+
}
|
178 |
+
.container {
|
179 |
+
display: flex;
|
180 |
+
flex-direction: column;
|
181 |
+
align-items: flex-start;
|
182 |
+
}
|
183 |
+
@media (max-width: 600px) {
|
184 |
+
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
|
185 |
+
}
|
186 |
+
</style>
|
187 |
+
""", unsafe_allow_html=True)
|
188 |
+
|
189 |
+
|
190 |
+
# β
Reset Chat Button
|
191 |
+
if st.sidebar.button("Reset Chat"):
|
192 |
+
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
193 |
+
st.session_state.response_ready = False
|
194 |
+
st.session_state.follow_up = ""
|
195 |
+
|
196 |
+
# β
Chat UI
|
197 |
+
user_input = st.chat_input("Type your message here...")
|
198 |
+
|
199 |
+
if user_input:
|
200 |
+
# Save user message
|
201 |
+
st.session_state.chat_history.append({'role': 'user', 'content': user_input})
|
202 |
+
|
203 |
+
# Get AI response (replace with actual function)
|
204 |
+
response = "This is HAL's response." # Example response
|
205 |
+
follow_up = "Would you like to explore a related topic?" # Follow-up suggestion
|
206 |
+
|
207 |
+
# Save AI response & follow-up
|
208 |
+
st.session_state.chat_history.append({'role': 'assistant', 'content': response})
|
209 |
+
st.session_state.chat_history.append({'role': 'assistant', 'content': follow_up})
|
210 |
+
|
211 |
+
# Store follow-up question separately if needed
|
212 |
+
st.session_state.follow_up = follow_up
|
213 |
+
|
214 |
+
# β
Ensure response is not empty before calling st.markdown()
|
215 |
+
if response:
|
216 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
217 |
+
|
218 |
+
if image_url:
|
219 |
+
st.image(image_url, caption="NASA Image of the Day")
|
220 |
+
|
221 |
+
st.session_state.follow_up = follow_up
|
222 |
+
st.session_state.response_ready = True
|
223 |
+
|
224 |
+
# β
Check before displaying follow-up message
|
225 |
+
if st.session_state.response_ready and st.session_state.follow_up:
|
226 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
|
227 |
+
st.session_state.response_ready = False
|