Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,12 +11,11 @@ from langdetect import detect # Ensure this package is installed
|
|
11 |
|
12 |
# β
Environment Variables
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
-
|
15 |
-
|
16 |
-
if not HF_TOKEN:
|
17 |
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
|
18 |
|
19 |
-
|
|
|
20 |
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
|
21 |
|
22 |
# β
Set Up Streamlit
|
@@ -33,8 +32,8 @@ if "follow_up" not in st.session_state:
|
|
33 |
# β
Model Configuration
|
34 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
35 |
|
36 |
-
# β
Initialize Hugging Face Model
|
37 |
-
def get_llm_hf_inference(model_id=model_id, max_new_tokens=
|
38 |
return HuggingFaceEndpoint(
|
39 |
repo_id=model_id,
|
40 |
max_new_tokens=max_new_tokens,
|
@@ -53,8 +52,10 @@ def get_nasa_apod():
|
|
53 |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
|
54 |
|
55 |
# β
Sentiment Analysis
|
56 |
-
sentiment_analyzer = pipeline(
|
57 |
-
|
|
|
|
|
58 |
|
59 |
def analyze_sentiment(user_text):
|
60 |
result = sentiment_analyzer(user_text)[0]
|
@@ -66,18 +67,12 @@ def predict_action(user_text):
|
|
66 |
return "nasa_info"
|
67 |
return "general_query"
|
68 |
|
69 |
-
# β
|
70 |
def generate_follow_up(user_text):
|
71 |
-
"
|
72 |
-
|
73 |
-
f"Given the user's question: '{user_text}', generate a SHORT follow-up question "
|
74 |
-
"suggesting a related topic or asking if they need further help. "
|
75 |
-
"Example: 'Would you like to explore quantum superposition or ask about another physics concept?'"
|
76 |
-
)
|
77 |
-
hf = get_llm_hf_inference(max_new_tokens=40, temperature=0.8)
|
78 |
output = hf.invoke(input=prompt_text).strip()
|
79 |
-
|
80 |
-
return output if output else "Would you like to explore another related topic or ask about something else?"
|
81 |
|
82 |
# β
Ensure English Responses
|
83 |
def ensure_english(text):
|
@@ -89,9 +84,24 @@ def ensure_english(text):
|
|
89 |
return "β οΈ Language detection failed. Please ask your question again."
|
90 |
return text
|
91 |
|
92 |
-
# β
|
93 |
-
def
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
# β
Handle NASA-Specific Queries
|
97 |
if action == "nasa_info":
|
@@ -104,17 +114,17 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=300):
|
|
104 |
return response, follow_up, chat_history, nasa_url
|
105 |
|
106 |
# β
Set Up LLM Request
|
107 |
-
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.
|
108 |
|
109 |
# β
Format Chat History
|
110 |
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
111 |
|
112 |
-
# β
Prompt Engineering
|
113 |
prompt = PromptTemplate.from_template(
|
114 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
115 |
"User: {user_text}.\n [/INST]\n"
|
116 |
-
"AI: Provide a
|
117 |
-
"
|
118 |
"π¨ Answer **only in English**."
|
119 |
"\nHAL:"
|
120 |
)
|
@@ -142,24 +152,41 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=300):
|
|
142 |
# β
Streamlit UI
|
143 |
st.title("π HAL - NASA AI Assistant")
|
144 |
|
145 |
-
# β
Justify
|
146 |
st.markdown("""
|
147 |
<style>
|
148 |
-
.user-msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
padding: 10px;
|
150 |
border-radius: 10px;
|
151 |
margin-bottom: 5px;
|
152 |
width: fit-content;
|
153 |
max-width: 80%;
|
154 |
-
text-align: justify;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
}
|
156 |
-
.user-msg { background-color: #696969; color: white; }
|
157 |
-
.assistant-msg { background-color: #333333; color: white; }
|
158 |
-
.container { display: flex; flex-direction: column; align-items: flex-start; }
|
159 |
-
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
|
160 |
</style>
|
161 |
""", unsafe_allow_html=True)
|
162 |
|
|
|
163 |
# β
Reset Chat Button
|
164 |
if st.sidebar.button("Reset Chat"):
|
165 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
@@ -170,12 +197,14 @@ if st.sidebar.button("Reset Chat"):
|
|
170 |
user_input = st.chat_input("Type your message here...")
|
171 |
|
172 |
if user_input:
|
|
|
173 |
response, follow_up, st.session_state.chat_history, image_url = get_response(
|
174 |
system_message="You are a helpful AI assistant.",
|
175 |
user_text=user_input,
|
176 |
chat_history=st.session_state.chat_history
|
177 |
)
|
178 |
|
|
|
179 |
if response:
|
180 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
181 |
|
@@ -185,6 +214,7 @@ if user_input:
|
|
185 |
st.session_state.follow_up = follow_up
|
186 |
st.session_state.response_ready = True
|
187 |
|
|
|
188 |
if st.session_state.response_ready and st.session_state.follow_up:
|
189 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
|
190 |
st.session_state.response_ready = False
|
|
|
11 |
|
12 |
# β
Environment Variables
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
+
if HF_TOKEN is None:
|
|
|
|
|
15 |
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
|
16 |
|
17 |
+
NASA_API_KEY = os.getenv("NASA_API_KEY")
|
18 |
+
if NASA_API_KEY is None:
|
19 |
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
|
20 |
|
21 |
# β
Set Up Streamlit
|
|
|
32 |
# β
Model Configuration
|
33 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
34 |
|
35 |
+
# β
Initialize Hugging Face Model
|
36 |
+
def get_llm_hf_inference(model_id=model_id, max_new_tokens=1024, temperature=0.7):
|
37 |
return HuggingFaceEndpoint(
|
38 |
repo_id=model_id,
|
39 |
max_new_tokens=max_new_tokens,
|
|
|
52 |
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
|
53 |
|
54 |
# β
Sentiment Analysis
|
55 |
+
sentiment_analyzer = pipeline(
|
56 |
+
"sentiment-analysis",
|
57 |
+
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english"
|
58 |
+
)
|
59 |
|
60 |
def analyze_sentiment(user_text):
|
61 |
result = sentiment_analyzer(user_text)[0]
|
|
|
67 |
return "nasa_info"
|
68 |
return "general_query"
|
69 |
|
70 |
+
# β
Follow-Up Question Generation
|
71 |
def generate_follow_up(user_text):
|
72 |
+
prompt_text = f"Based on: '{user_text}', generate a concise, friendly follow-up."
|
73 |
+
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
|
|
|
|
|
|
|
|
|
|
74 |
output = hf.invoke(input=prompt_text).strip()
|
75 |
+
return output if output else "Would you like to explore this topic further?"
|
|
|
76 |
|
77 |
# β
Ensure English Responses
|
78 |
def ensure_english(text):
|
|
|
84 |
return "β οΈ Language detection failed. Please ask your question again."
|
85 |
return text
|
86 |
|
87 |
+
# β
Ensure Every Response Has a Follow-Up Question
|
88 |
+
def generate_follow_up(user_text):
|
89 |
+
"""Generates a follow-up question to guide the user toward related topics or next steps."""
|
90 |
+
prompt_text = (
|
91 |
+
f"Given the user's question: '{user_text}', generate a SHORT follow-up question "
|
92 |
+
"suggesting either a related topic or asking if they need further help. "
|
93 |
+
"Example: 'Would you like to explore quantum superposition or ask about another physics concept?' "
|
94 |
+
"Keep it concise and engaging."
|
95 |
+
)
|
96 |
+
hf = get_llm_hf_inference(max_new_tokens=40, temperature=0.8)
|
97 |
+
output = hf.invoke(input=prompt_text).strip()
|
98 |
+
|
99 |
+
# Fallback in case of an empty response
|
100 |
+
return output if output else "Would you like to explore another related topic or ask about something else?"
|
101 |
+
|
102 |
+
# β
Main Response Function
|
103 |
+
def get_response(system_message, chat_history, user_text, max_new_tokens=512):
|
104 |
+
action = predict_action(user_text) # π₯ Fix: Define 'action'
|
105 |
|
106 |
# β
Handle NASA-Specific Queries
|
107 |
if action == "nasa_info":
|
|
|
114 |
return response, follow_up, chat_history, nasa_url
|
115 |
|
116 |
# β
Set Up LLM Request
|
117 |
+
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
118 |
|
119 |
# β
Format Chat History
|
120 |
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
121 |
|
122 |
+
# β
Prompt Engineering
|
123 |
prompt = PromptTemplate.from_template(
|
124 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
125 |
"User: {user_text}.\n [/INST]\n"
|
126 |
+
"AI: Provide a detailed explanation with depth. "
|
127 |
+
"Use a conversational style, starting with 'Certainly!', 'Of course!', or 'Great question!'."
|
128 |
"π¨ Answer **only in English**."
|
129 |
"\nHAL:"
|
130 |
)
|
|
|
152 |
# β
Streamlit UI
|
153 |
st.title("π HAL - NASA AI Assistant")
|
154 |
|
155 |
+
# β
Justify all chatbot responses
|
156 |
st.markdown("""
|
157 |
<style>
|
158 |
+
.user-msg {
|
159 |
+
background-color: #696969;
|
160 |
+
color: white;
|
161 |
+
padding: 10px;
|
162 |
+
border-radius: 10px;
|
163 |
+
margin-bottom: 5px;
|
164 |
+
width: fit-content;
|
165 |
+
max-width: 80%;
|
166 |
+
text-align: justify; /* β
Justify text */
|
167 |
+
}
|
168 |
+
.assistant-msg {
|
169 |
+
background-color: #333333;
|
170 |
+
color: white;
|
171 |
padding: 10px;
|
172 |
border-radius: 10px;
|
173 |
margin-bottom: 5px;
|
174 |
width: fit-content;
|
175 |
max-width: 80%;
|
176 |
+
text-align: justify; /* β
Justify text */
|
177 |
+
}
|
178 |
+
.container {
|
179 |
+
display: flex;
|
180 |
+
flex-direction: column;
|
181 |
+
align-items: flex-start;
|
182 |
+
}
|
183 |
+
@media (max-width: 600px) {
|
184 |
+
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
|
185 |
}
|
|
|
|
|
|
|
|
|
186 |
</style>
|
187 |
""", unsafe_allow_html=True)
|
188 |
|
189 |
+
|
190 |
# β
Reset Chat Button
|
191 |
if st.sidebar.button("Reset Chat"):
|
192 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
|
|
197 |
user_input = st.chat_input("Type your message here...")
|
198 |
|
199 |
if user_input:
|
200 |
+
# β
Ensure get_response() returns a response
|
201 |
response, follow_up, st.session_state.chat_history, image_url = get_response(
|
202 |
system_message="You are a helpful AI assistant.",
|
203 |
user_text=user_input,
|
204 |
chat_history=st.session_state.chat_history
|
205 |
)
|
206 |
|
207 |
+
# β
Ensure response is not empty before calling st.markdown()
|
208 |
if response:
|
209 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
210 |
|
|
|
214 |
st.session_state.follow_up = follow_up
|
215 |
st.session_state.response_ready = True
|
216 |
|
217 |
+
# β
Check before displaying follow-up message
|
218 |
if st.session_state.response_ready and st.session_state.follow_up:
|
219 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
|
220 |
st.session_state.response_ready = False
|