Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,24 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
import random
|
4 |
-
import subprocess
|
5 |
import requests
|
6 |
import streamlit as st
|
7 |
-
import spacy # For additional NLP processing
|
8 |
from langchain_huggingface import HuggingFaceEndpoint
|
9 |
from langchain_core.prompts import PromptTemplate
|
10 |
from langchain_core.output_parsers import StrOutputParser
|
11 |
from transformers import pipeline
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
return spacy.load("en_core_web_sm")
|
20 |
-
except OSError:
|
21 |
-
st.warning("Downloading spaCy model en_core_web_sm... This may take a moment.")
|
22 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
|
23 |
-
return spacy.load("en_core_web_sm")
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
# --- Initialize Session State Variables ---
|
28 |
if "chat_history" not in st.session_state:
|
@@ -45,12 +41,12 @@ def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7)
|
|
45 |
repo_id=model_id,
|
46 |
max_new_tokens=max_new_tokens,
|
47 |
temperature=temperature,
|
48 |
-
token=
|
49 |
task="text-generation"
|
50 |
)
|
51 |
|
52 |
def get_nasa_apod():
|
53 |
-
url = f"https://api.nasa.gov/planetary/apod?api_key={
|
54 |
response = requests.get(url)
|
55 |
if response.status_code == 200:
|
56 |
data = response.json()
|
@@ -63,23 +59,19 @@ def analyze_sentiment(user_text):
|
|
63 |
return result['label']
|
64 |
|
65 |
def predict_action(user_text):
|
66 |
-
if "
|
67 |
return "nasa_info"
|
68 |
return "general_query"
|
69 |
|
70 |
-
def
|
71 |
"""
|
72 |
-
|
|
|
73 |
"""
|
74 |
-
doc = nlp_spacy(text)
|
75 |
-
entities = [ent.text for ent in doc.ents]
|
76 |
-
return ", ".join(entities) if entities else ""
|
77 |
-
|
78 |
-
def generate_follow_up(user_text):
|
79 |
prompt_text = (
|
80 |
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
|
81 |
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
|
82 |
-
"and another 'Would you like to explore another aspect of quantum physics?'
|
83 |
)
|
84 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
85 |
output = hf.invoke(input=prompt_text).strip()
|
@@ -90,14 +82,15 @@ def generate_follow_up(user_text):
|
|
90 |
return random.choice(cleaned)
|
91 |
|
92 |
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
|
|
|
|
|
|
|
|
|
93 |
sentiment = analyze_sentiment(user_text)
|
94 |
action = predict_action(user_text)
|
95 |
|
96 |
-
# Extract
|
97 |
-
context_info = extract_context(user_text)
|
98 |
-
context_clause = f" The key topics here are: {context_info}." if context_info else ""
|
99 |
-
|
100 |
-
# Extract style instructions if present.
|
101 |
style_instruction = ""
|
102 |
lower_text = user_text.lower()
|
103 |
if "in the voice of" in lower_text or "speaking as" in lower_text:
|
@@ -123,17 +116,39 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
123 |
filtered_history += f"{message['role']}: {message['content']}\n"
|
124 |
|
125 |
style_clause = style_instruction if style_instruction else ""
|
126 |
-
|
|
|
127 |
prompt = PromptTemplate.from_template(
|
128 |
(
|
129 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
130 |
"User: {user_text}.\n [/INST]\n"
|
131 |
-
"AI: Please provide a detailed
|
132 |
-
|
|
|
133 |
"\nHAL:"
|
134 |
)
|
135 |
)
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
# --- Chat UI ---
|
139 |
st.title("π HAL - Your NASA AI Assistant")
|
@@ -145,13 +160,36 @@ if st.sidebar.button("Reset Chat"):
|
|
145 |
st.session_state.follow_up = ""
|
146 |
st.experimental_rerun()
|
147 |
|
148 |
-
st.markdown("
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
user_input = st.chat_input("Type your message here...")
|
157 |
|
@@ -165,3 +203,11 @@ if user_input:
|
|
165 |
st.image(image_url, caption="NASA Image of the Day")
|
166 |
st.session_state.follow_up = follow_up
|
167 |
st.session_state.response_ready = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import random
|
|
|
4 |
import requests
|
5 |
import streamlit as st
|
|
|
6 |
from langchain_huggingface import HuggingFaceEndpoint
|
7 |
from langchain_core.prompts import PromptTemplate
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from transformers import pipeline
|
10 |
|
11 |
+
# Use environment variables for keys
|
12 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
+
if HF_TOKEN is None:
|
14 |
+
raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")
|
15 |
|
16 |
+
NASA_API_KEY = os.getenv("NASA_API_KEY")
|
17 |
+
if NASA_API_KEY is None:
|
18 |
+
raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Set up Streamlit UI
|
21 |
+
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
22 |
|
23 |
# --- Initialize Session State Variables ---
|
24 |
if "chat_history" not in st.session_state:
|
|
|
41 |
repo_id=model_id,
|
42 |
max_new_tokens=max_new_tokens,
|
43 |
temperature=temperature,
|
44 |
+
token=HF_TOKEN,
|
45 |
task="text-generation"
|
46 |
)
|
47 |
|
48 |
def get_nasa_apod():
|
49 |
+
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
|
50 |
response = requests.get(url)
|
51 |
if response.status_code == 200:
|
52 |
data = response.json()
|
|
|
59 |
return result['label']
|
60 |
|
61 |
def predict_action(user_text):
|
62 |
+
if "NASA" in user_text or "space" in user_text:
|
63 |
return "nasa_info"
|
64 |
return "general_query"
|
65 |
|
66 |
+
def generate_follow_up(user_text):
|
67 |
"""
|
68 |
+
Generates two variant follow-up questions and randomly selects one.
|
69 |
+
It also cleans up any unwanted quotation marks or extra meta commentary.
|
70 |
"""
|
|
|
|
|
|
|
|
|
|
|
71 |
prompt_text = (
|
72 |
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
|
73 |
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
|
74 |
+
"and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary."
|
75 |
)
|
76 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
77 |
output = hf.invoke(input=prompt_text).strip()
|
|
|
82 |
return random.choice(cleaned)
|
83 |
|
84 |
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
85 |
+
"""
|
86 |
+
Generates HAL's answer with depth and a follow-up question.
|
87 |
+
The prompt instructs the model to provide a detailed explanation and then generate a follow-up.
|
88 |
+
If the answer comes back empty, a fallback answer is used.
|
89 |
+
"""
|
90 |
sentiment = analyze_sentiment(user_text)
|
91 |
action = predict_action(user_text)
|
92 |
|
93 |
+
# Extract style instruction if present
|
|
|
|
|
|
|
|
|
94 |
style_instruction = ""
|
95 |
lower_text = user_text.lower()
|
96 |
if "in the voice of" in lower_text or "speaking as" in lower_text:
|
|
|
116 |
filtered_history += f"{message['role']}: {message['content']}\n"
|
117 |
|
118 |
style_clause = style_instruction if style_instruction else ""
|
119 |
+
|
120 |
+
# Instruct the model to generate a detailed, in-depth answer.
|
121 |
prompt = PromptTemplate.from_template(
|
122 |
(
|
123 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
124 |
"User: {user_text}.\n [/INST]\n"
|
125 |
+
"AI: Please provide a detailed explanation in depth. "
|
126 |
+
"Ensure your response covers the topic thoroughly and is written in a friendly, conversational style, "
|
127 |
+
"starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
|
128 |
"\nHAL:"
|
129 |
)
|
130 |
)
|
131 |
|
132 |
+
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
133 |
+
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
134 |
+
# Remove any extra markers if present.
|
135 |
+
response = response.split("HAL:")[-1].strip()
|
136 |
+
|
137 |
+
# Fallback in case the generated answer is empty
|
138 |
+
if not response:
|
139 |
+
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
|
140 |
+
|
141 |
+
chat_history.append({'role': 'user', 'content': user_text})
|
142 |
+
chat_history.append({'role': 'assistant', 'content': response})
|
143 |
+
|
144 |
+
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
|
145 |
+
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
|
146 |
+
chat_history[-1]['content'] = response
|
147 |
+
|
148 |
+
follow_up = generate_follow_up(user_text)
|
149 |
+
chat_history.append({'role': 'assistant', 'content': follow_up})
|
150 |
+
|
151 |
+
return response, follow_up, chat_history, None
|
152 |
|
153 |
# --- Chat UI ---
|
154 |
st.title("π HAL - Your NASA AI Assistant")
|
|
|
160 |
st.session_state.follow_up = ""
|
161 |
st.experimental_rerun()
|
162 |
|
163 |
+
st.markdown("""
|
164 |
+
<style>
|
165 |
+
.user-msg {
|
166 |
+
background-color: #696969;
|
167 |
+
color: white;
|
168 |
+
padding: 10px;
|
169 |
+
border-radius: 10px;
|
170 |
+
margin-bottom: 5px;
|
171 |
+
width: fit-content;
|
172 |
+
max-width: 80%;
|
173 |
+
}
|
174 |
+
.assistant-msg {
|
175 |
+
background-color: #333333;
|
176 |
+
color: white;
|
177 |
+
padding: 10px;
|
178 |
+
border-radius: 10px;
|
179 |
+
margin-bottom: 5px;
|
180 |
+
width: fit-content;
|
181 |
+
max-width: 80%;
|
182 |
+
}
|
183 |
+
.container {
|
184 |
+
display: flex;
|
185 |
+
flex-direction: column;
|
186 |
+
align-items: flex-start;
|
187 |
+
}
|
188 |
+
@media (max-width: 600px) {
|
189 |
+
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
|
190 |
+
}
|
191 |
+
</style>
|
192 |
+
""", unsafe_allow_html=True)
|
193 |
|
194 |
user_input = st.chat_input("Type your message here...")
|
195 |
|
|
|
203 |
st.image(image_url, caption="NASA Image of the Day")
|
204 |
st.session_state.follow_up = follow_up
|
205 |
st.session_state.response_ready = True
|
206 |
+
|
207 |
+
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
208 |
+
for message in st.session_state.chat_history:
|
209 |
+
if message["role"] == "user":
|
210 |
+
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
211 |
+
else:
|
212 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
213 |
+
st.markdown("</div>", unsafe_allow_html=True)
|