CCockrum commited on
Commit
7e790cb
Β·
verified Β·
1 Parent(s): b79db49

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -39
app.py CHANGED
@@ -1,28 +1,24 @@
1
  import os
2
  import re
3
  import random
4
- import subprocess
5
  import requests
6
  import streamlit as st
7
- import spacy # For additional NLP processing
8
  from langchain_huggingface import HuggingFaceEndpoint
9
  from langchain_core.prompts import PromptTemplate
10
  from langchain_core.output_parsers import StrOutputParser
11
  from transformers import pipeline
12
 
13
- # Must be the first Streamlit command!
14
- st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
 
 
15
 
16
- # --- Helper to load spaCy model with fallback ---
17
- def load_spacy_model():
18
- try:
19
- return spacy.load("en_core_web_sm")
20
- except OSError:
21
- st.warning("Downloading spaCy model en_core_web_sm... This may take a moment.")
22
- subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
23
- return spacy.load("en_core_web_sm")
24
 
25
- nlp_spacy = load_spacy_model()
 
26
 
27
  # --- Initialize Session State Variables ---
28
  if "chat_history" not in st.session_state:
@@ -45,12 +41,12 @@ def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7)
45
  repo_id=model_id,
46
  max_new_tokens=max_new_tokens,
47
  temperature=temperature,
48
- token=os.getenv("HF_TOKEN"),
49
  task="text-generation"
50
  )
51
 
52
  def get_nasa_apod():
53
- url = f"https://api.nasa.gov/planetary/apod?api_key={os.getenv('NASA_API_KEY')}"
54
  response = requests.get(url)
55
  if response.status_code == 200:
56
  data = response.json()
@@ -63,23 +59,19 @@ def analyze_sentiment(user_text):
63
  return result['label']
64
 
65
  def predict_action(user_text):
66
- if "nasa" in user_text.lower() or "space" in user_text.lower():
67
  return "nasa_info"
68
  return "general_query"
69
 
70
- def extract_context(text):
71
  """
72
- Extract key entities using spaCy for additional context.
 
73
  """
74
- doc = nlp_spacy(text)
75
- entities = [ent.text for ent in doc.ents]
76
- return ", ".join(entities) if entities else ""
77
-
78
- def generate_follow_up(user_text):
79
  prompt_text = (
80
  f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
81
  "that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
82
- "and another 'Would you like to explore another aspect of quantum physics?'. Do not include extra commentary."
83
  )
84
  hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
85
  output = hf.invoke(input=prompt_text).strip()
@@ -90,14 +82,15 @@ def generate_follow_up(user_text):
90
  return random.choice(cleaned)
91
 
92
  def get_response(system_message, chat_history, user_text, max_new_tokens=256):
 
 
 
 
 
93
  sentiment = analyze_sentiment(user_text)
94
  action = predict_action(user_text)
95
 
96
- # Extract extra context from user's text.
97
- context_info = extract_context(user_text)
98
- context_clause = f" The key topics here are: {context_info}." if context_info else ""
99
-
100
- # Extract style instructions if present.
101
  style_instruction = ""
102
  lower_text = user_text.lower()
103
  if "in the voice of" in lower_text or "speaking as" in lower_text:
@@ -123,17 +116,39 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
123
  filtered_history += f"{message['role']}: {message['content']}\n"
124
 
125
  style_clause = style_instruction if style_instruction else ""
126
- # Construct prompt with additional context.
 
127
  prompt = PromptTemplate.from_template(
128
  (
129
  "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
130
  "User: {user_text}.\n [/INST]\n"
131
- "AI: Please provide a detailed, in-depth answer in a friendly, conversational tone that thoroughly covers the topic."
132
- + style_clause + context_clause +
 
133
  "\nHAL:"
134
  )
135
  )
136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
  # --- Chat UI ---
139
  st.title("πŸš€ HAL - Your NASA AI Assistant")
@@ -145,13 +160,36 @@ if st.sidebar.button("Reset Chat"):
145
  st.session_state.follow_up = ""
146
  st.experimental_rerun()
147
 
148
- st.markdown("<div class='container'>", unsafe_allow_html=True)
149
- for message in st.session_state.chat_history:
150
- if message["role"] == "user":
151
- st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
152
- else:
153
- st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
154
- st.markdown("</div>", unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  user_input = st.chat_input("Type your message here...")
157
 
@@ -165,3 +203,11 @@ if user_input:
165
  st.image(image_url, caption="NASA Image of the Day")
166
  st.session_state.follow_up = follow_up
167
  st.session_state.response_ready = True
 
 
 
 
 
 
 
 
 
1
  import os
2
  import re
3
  import random
 
4
  import requests
5
  import streamlit as st
 
6
  from langchain_huggingface import HuggingFaceEndpoint
7
  from langchain_core.prompts import PromptTemplate
8
  from langchain_core.output_parsers import StrOutputParser
9
  from transformers import pipeline
10
 
11
+ # Use environment variables for keys
12
+ HF_TOKEN = os.getenv("HF_TOKEN")
13
+ if HF_TOKEN is None:
14
+ raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")
15
 
16
+ NASA_API_KEY = os.getenv("NASA_API_KEY")
17
+ if NASA_API_KEY is None:
18
+ raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
 
 
 
 
 
19
 
20
+ # Set up Streamlit UI
21
+ st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
22
 
23
  # --- Initialize Session State Variables ---
24
  if "chat_history" not in st.session_state:
 
41
  repo_id=model_id,
42
  max_new_tokens=max_new_tokens,
43
  temperature=temperature,
44
+ token=HF_TOKEN,
45
  task="text-generation"
46
  )
47
 
48
  def get_nasa_apod():
49
+ url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
50
  response = requests.get(url)
51
  if response.status_code == 200:
52
  data = response.json()
 
59
  return result['label']
60
 
61
  def predict_action(user_text):
62
+ if "NASA" in user_text or "space" in user_text:
63
  return "nasa_info"
64
  return "general_query"
65
 
66
+ def generate_follow_up(user_text):
67
  """
68
+ Generates two variant follow-up questions and randomly selects one.
69
+ It also cleans up any unwanted quotation marks or extra meta commentary.
70
  """
 
 
 
 
 
71
  prompt_text = (
72
  f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
73
  "that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
74
+ "and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary."
75
  )
76
  hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
77
  output = hf.invoke(input=prompt_text).strip()
 
82
  return random.choice(cleaned)
83
 
84
  def get_response(system_message, chat_history, user_text, max_new_tokens=256):
85
+ """
86
+ Generates HAL's answer with depth and a follow-up question.
87
+ The prompt instructs the model to provide a detailed explanation and then generate a follow-up.
88
+ If the answer comes back empty, a fallback answer is used.
89
+ """
90
  sentiment = analyze_sentiment(user_text)
91
  action = predict_action(user_text)
92
 
93
+ # Extract style instruction if present
 
 
 
 
94
  style_instruction = ""
95
  lower_text = user_text.lower()
96
  if "in the voice of" in lower_text or "speaking as" in lower_text:
 
116
  filtered_history += f"{message['role']}: {message['content']}\n"
117
 
118
  style_clause = style_instruction if style_instruction else ""
119
+
120
+ # Instruct the model to generate a detailed, in-depth answer.
121
  prompt = PromptTemplate.from_template(
122
  (
123
  "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
124
  "User: {user_text}.\n [/INST]\n"
125
+ "AI: Please provide a detailed explanation in depth. "
126
+ "Ensure your response covers the topic thoroughly and is written in a friendly, conversational style, "
127
+ "starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
128
  "\nHAL:"
129
  )
130
  )
131
 
132
+ chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
133
+ response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
134
+ # Remove any extra markers if present.
135
+ response = response.split("HAL:")[-1].strip()
136
+
137
+ # Fallback in case the generated answer is empty
138
+ if not response:
139
+ response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
140
+
141
+ chat_history.append({'role': 'user', 'content': user_text})
142
+ chat_history.append({'role': 'assistant', 'content': response})
143
+
144
+ if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
145
+ response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
146
+ chat_history[-1]['content'] = response
147
+
148
+ follow_up = generate_follow_up(user_text)
149
+ chat_history.append({'role': 'assistant', 'content': follow_up})
150
+
151
+ return response, follow_up, chat_history, None
152
 
153
  # --- Chat UI ---
154
  st.title("πŸš€ HAL - Your NASA AI Assistant")
 
160
  st.session_state.follow_up = ""
161
  st.experimental_rerun()
162
 
163
+ st.markdown("""
164
+ <style>
165
+ .user-msg {
166
+ background-color: #696969;
167
+ color: white;
168
+ padding: 10px;
169
+ border-radius: 10px;
170
+ margin-bottom: 5px;
171
+ width: fit-content;
172
+ max-width: 80%;
173
+ }
174
+ .assistant-msg {
175
+ background-color: #333333;
176
+ color: white;
177
+ padding: 10px;
178
+ border-radius: 10px;
179
+ margin-bottom: 5px;
180
+ width: fit-content;
181
+ max-width: 80%;
182
+ }
183
+ .container {
184
+ display: flex;
185
+ flex-direction: column;
186
+ align-items: flex-start;
187
+ }
188
+ @media (max-width: 600px) {
189
+ .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
190
+ }
191
+ </style>
192
+ """, unsafe_allow_html=True)
193
 
194
  user_input = st.chat_input("Type your message here...")
195
 
 
203
  st.image(image_url, caption="NASA Image of the Day")
204
  st.session_state.follow_up = follow_up
205
  st.session_state.response_ready = True
206
+
207
+ st.markdown("<div class='container'>", unsafe_allow_html=True)
208
+ for message in st.session_state.chat_history:
209
+ if message["role"] == "user":
210
+ st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
211
+ else:
212
+ st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
213
+ st.markdown("</div>", unsafe_allow_html=True)