Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,109 +3,42 @@ from langchain_huggingface import HuggingFaceEndpoint
|
|
3 |
import streamlit as st
|
4 |
from langchain_core.prompts import PromptTemplate
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
|
6 |
|
7 |
-
model_id="mistralai/Mistral-7B-Instruct-v0.3"
|
8 |
|
9 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
10 |
-
"""
|
11 |
-
Returns a language model for HuggingFace inference.
|
12 |
-
|
13 |
-
Parameters:
|
14 |
-
- model_id (str): The ID of the HuggingFace model repository.
|
15 |
-
- max_new_tokens (int): The maximum number of new tokens to generate.
|
16 |
-
- temperature (float): The temperature for sampling from the model.
|
17 |
-
|
18 |
-
Returns:
|
19 |
-
- llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
|
20 |
-
"""
|
21 |
llm = HuggingFaceEndpoint(
|
22 |
repo_id=model_id,
|
23 |
max_new_tokens=max_new_tokens,
|
24 |
temperature=temperature,
|
25 |
-
token
|
26 |
)
|
27 |
return llm
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
if
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
st.session_state.user_text = None
|
41 |
-
|
42 |
-
# Initialize session state for model parameters
|
43 |
-
if "max_response_length" not in st.session_state:
|
44 |
-
st.session_state.max_response_length = 256
|
45 |
-
|
46 |
-
if "system_message" not in st.session_state:
|
47 |
-
st.session_state.system_message = "friendly AI conversing with a human user"
|
48 |
-
|
49 |
-
if "starter_message" not in st.session_state:
|
50 |
-
st.session_state.starter_message = "Hello, there! How can I help you today?"
|
51 |
-
|
52 |
-
|
53 |
-
# Sidebar for settings
|
54 |
-
with st.sidebar:
|
55 |
-
st.header("System Settings")
|
56 |
-
|
57 |
-
# AI Settings
|
58 |
-
st.session_state.system_message = st.text_area(
|
59 |
-
"System Message", value="You are a friendly AI conversing with a human user."
|
60 |
-
)
|
61 |
-
st.session_state.starter_message = st.text_area(
|
62 |
-
'First AI Message', value="Hello, there! How can I help you today?"
|
63 |
-
)
|
64 |
-
|
65 |
-
# Model Settings
|
66 |
-
st.session_state.max_response_length = st.number_input(
|
67 |
-
"Max Response Length", value=128
|
68 |
-
)
|
69 |
-
|
70 |
-
# Avatar Selection
|
71 |
-
st.markdown("*Select Avatars:*")
|
72 |
-
col1, col2 = st.columns(2)
|
73 |
-
with col1:
|
74 |
-
st.session_state.avatars['assistant'] = st.selectbox(
|
75 |
-
"AI Avatar", options=["🤗", "💬", "🤖"], index=0
|
76 |
-
)
|
77 |
-
with col2:
|
78 |
-
st.session_state.avatars['user'] = st.selectbox(
|
79 |
-
"User Avatar", options=["👤", "👱♂️", "👨🏾", "👩", "👧🏾"], index=0
|
80 |
-
)
|
81 |
-
# Reset Chat History
|
82 |
-
reset_history = st.button("Reset Chat History")
|
83 |
-
|
84 |
-
# Initialize or reset chat history
|
85 |
-
if "chat_history" not in st.session_state or reset_history:
|
86 |
-
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
|
87 |
|
88 |
def get_response(system_message, chat_history, user_text,
|
89 |
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
|
90 |
-
"""
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
-
Args:
|
94 |
-
system_message (str): The system message for the conversation.
|
95 |
-
chat_history (list): The list of previous chat messages.
|
96 |
-
user_text (str): The user's input text.
|
97 |
-
model_id (str, optional): The ID of the HuggingFace model to use.
|
98 |
-
eos_token_id (list, optional): The list of end-of-sentence token IDs.
|
99 |
-
max_new_tokens (int, optional): The maximum number of new tokens to generate.
|
100 |
-
get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function.
|
101 |
-
|
102 |
-
Returns:
|
103 |
-
tuple: A tuple containing the generated response and the updated chat history.
|
104 |
-
"""
|
105 |
-
# Set up the model
|
106 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
|
107 |
|
108 |
-
# Create the prompt template
|
109 |
prompt = PromptTemplate.from_template(
|
110 |
(
|
111 |
"[INST] {system_message}"
|
@@ -114,55 +47,36 @@ def get_response(system_message, chat_history, user_text,
|
|
114 |
"\nAI:"
|
115 |
)
|
116 |
)
|
117 |
-
# Make the chain and bind the prompt
|
118 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
119 |
-
|
120 |
-
# Generate the response
|
121 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
|
122 |
response = response.split("AI:")[-1]
|
123 |
|
124 |
-
# Update the chat history
|
125 |
chat_history.append({'role': 'user', 'content': user_text})
|
126 |
chat_history.append({'role': 'assistant', 'content': response})
|
127 |
return response, chat_history
|
128 |
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
134 |
|
135 |
-
#
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
for message in st.session_state.chat_history:
|
139 |
-
|
140 |
-
if message['role'] == 'system':
|
141 |
-
continue
|
142 |
-
|
143 |
-
# Display the chat message using the correct avatar
|
144 |
-
with st.chat_message(message['role'],
|
145 |
-
avatar=st.session_state['avatars'][message['role']]):
|
146 |
-
st.markdown(message['content'])
|
147 |
-
|
148 |
-
# When the user enter new text:
|
149 |
-
if st.session_state.user_text:
|
150 |
-
|
151 |
-
# Display the user's new message immediately
|
152 |
-
with st.chat_message("user",
|
153 |
-
avatar=st.session_state.avatars['user']):
|
154 |
-
st.markdown(st.session_state.user_text)
|
155 |
-
|
156 |
-
# Display a spinner status bar while waiting for the response
|
157 |
-
with st.chat_message("assistant",
|
158 |
-
avatar=st.session_state.avatars['assistant']):
|
159 |
-
|
160 |
-
with st.spinner("Thinking..."):
|
161 |
-
# Call the Inference API with the system_prompt, user text, and history
|
162 |
-
response, st.session_state.chat_history = get_response(
|
163 |
-
system_message=st.session_state.system_message,
|
164 |
-
user_text=st.session_state.user_text,
|
165 |
-
chat_history=st.session_state.chat_history,
|
166 |
-
max_new_tokens=st.session_state.max_response_length,
|
167 |
-
)
|
168 |
-
st.markdown(response)
|
|
|
3 |
import streamlit as st
|
4 |
from langchain_core.prompts import PromptTemplate
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
+
import requests
|
7 |
+
from config import NASA_API_KEY # Import the NASA API key from the configuration file
|
8 |
|
9 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
10 |
|
11 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
llm = HuggingFaceEndpoint(
|
13 |
repo_id=model_id,
|
14 |
max_new_tokens=max_new_tokens,
|
15 |
temperature=temperature,
|
16 |
+
token=os.getenv("HF_TOKEN") # Hugging Face token from environment variable
|
17 |
)
|
18 |
return llm
|
19 |
|
20 |
+
def get_nasa_apod():
|
21 |
+
"""
|
22 |
+
Fetch the Astronomy Picture of the Day (APOD) from the NASA API.
|
23 |
+
"""
|
24 |
+
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
|
25 |
+
response = requests.get(url)
|
26 |
+
if response.status_code == 200:
|
27 |
+
data = response.json()
|
28 |
+
return f"Title: {data['title']}\nExplanation: {data['explanation']}\nURL: {data['url']}"
|
29 |
+
else:
|
30 |
+
return "I couldn't fetch data from NASA right now. Please try again later."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def get_response(system_message, chat_history, user_text,
|
33 |
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
|
34 |
+
if "NASA" in user_text or "space" in user_text:
|
35 |
+
nasa_response = get_nasa_apod()
|
36 |
+
chat_history.append({'role': 'user', 'content': user_text})
|
37 |
+
chat_history.append({'role': 'assistant', 'content': nasa_response})
|
38 |
+
return nasa_response, chat_history
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
|
41 |
|
|
|
42 |
prompt = PromptTemplate.from_template(
|
43 |
(
|
44 |
"[INST] {system_message}"
|
|
|
47 |
"\nAI:"
|
48 |
)
|
49 |
)
|
|
|
50 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
|
|
|
|
51 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
|
52 |
response = response.split("AI:")[-1]
|
53 |
|
|
|
54 |
chat_history.append({'role': 'user', 'content': user_text})
|
55 |
chat_history.append({'role': 'assistant', 'content': response})
|
56 |
return response, chat_history
|
57 |
|
58 |
+
# Streamlit setup
|
59 |
+
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
|
60 |
+
st.title("Personal Assistant")
|
61 |
+
st.markdown(f"*This chatbot uses {model_id} and NASA's APIs to provide information and responses.*")
|
62 |
+
|
63 |
+
# Initialize session state
|
64 |
+
if "chat_history" not in st.session_state:
|
65 |
+
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
66 |
|
67 |
+
# Sidebar for settings
|
68 |
+
if st.sidebar.button("Reset Chat"):
|
69 |
+
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
70 |
+
|
71 |
+
# Main chat interface
|
72 |
+
user_input = st.chat_input(placeholder="Type your message here...")
|
73 |
+
if user_input:
|
74 |
+
response, st.session_state.chat_history = get_response(
|
75 |
+
system_message="You are a helpful AI assistant.",
|
76 |
+
user_text=user_input,
|
77 |
+
chat_history=st.session_state.chat_history,
|
78 |
+
max_new_tokens=128
|
79 |
+
)
|
80 |
+
# Display messages
|
81 |
for message in st.session_state.chat_history:
|
82 |
+
st.chat_message(message["role"]).write(message["content"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|