Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,16 +23,21 @@ if "follow_up" not in st.session_state:
|
|
23 |
# --- Set Up Model & API Functions ---
|
24 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
25 |
|
26 |
-
# Initialize sentiment analysis pipeline
|
27 |
-
sentiment_analyzer = pipeline(
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
return HuggingFaceEndpoint(
|
31 |
repo_id=model_id,
|
32 |
-
task="text-generation", # Specify the task explicitly
|
33 |
max_new_tokens=max_new_tokens,
|
34 |
temperature=temperature,
|
35 |
-
token=os.getenv("HF_TOKEN")
|
|
|
36 |
)
|
37 |
|
38 |
def get_nasa_apod():
|
@@ -54,14 +59,21 @@ def predict_action(user_text):
|
|
54 |
return "general_query"
|
55 |
|
56 |
def generate_follow_up(user_text):
|
|
|
|
|
|
|
57 |
prompt_text = (
|
58 |
-
f"
|
59 |
-
"to
|
|
|
60 |
)
|
61 |
-
hf = get_llm_hf_inference(max_new_tokens=
|
62 |
return hf.invoke(input=prompt_text).strip()
|
63 |
|
64 |
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
|
|
|
|
|
65 |
sentiment = analyze_sentiment(user_text)
|
66 |
action = predict_action(user_text)
|
67 |
|
@@ -75,20 +87,25 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
75 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
76 |
return response, follow_up, chat_history, nasa_url
|
77 |
|
78 |
-
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.
|
79 |
|
80 |
prompt = PromptTemplate.from_template(
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
84 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
|
85 |
-
response = response.split("
|
86 |
|
87 |
chat_history.append({'role': 'user', 'content': user_text})
|
88 |
chat_history.append({'role': 'assistant', 'content': response})
|
89 |
|
90 |
if sentiment == "NEGATIVE":
|
91 |
-
response
|
92 |
|
93 |
follow_up = generate_follow_up(user_text)
|
94 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
@@ -147,42 +164,24 @@ for message in st.session_state.chat_history:
|
|
147 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
148 |
st.markdown("</div>", unsafe_allow_html=True)
|
149 |
|
150 |
-
# --- Input
|
151 |
-
user_input = st.
|
152 |
-
|
153 |
-
send_button_placeholder = st.empty()
|
154 |
|
155 |
-
if
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
chat_history=st.session_state.chat_history
|
162 |
-
)
|
163 |
|
164 |
-
|
165 |
|
166 |
-
|
167 |
-
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
st.session_state.response_ready = True # Hide Send button after response
|
172 |
|
173 |
-
# Conversational Follow-up
|
174 |
if st.session_state.response_ready and st.session_state.follow_up:
|
175 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
|
176 |
-
|
177 |
-
next_input = st.text_input("HAL is waiting for your response...")
|
178 |
-
|
179 |
-
if next_input:
|
180 |
-
response, _, st.session_state.chat_history, _ = get_response(
|
181 |
-
system_message="You are a helpful AI assistant.",
|
182 |
-
user_text=next_input,
|
183 |
-
chat_history=st.session_state.chat_history
|
184 |
-
)
|
185 |
-
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
186 |
-
|
187 |
-
st.session_state.response_ready = False
|
188 |
-
st.session_state.follow_up = ""
|
|
|
23 |
# --- Set Up Model & API Functions ---
|
24 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
25 |
|
26 |
+
# Initialize sentiment analysis pipeline with explicit model specification
|
27 |
+
sentiment_analyzer = pipeline(
|
28 |
+
"sentiment-analysis",
|
29 |
+
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
|
30 |
+
revision="714eb0f"
|
31 |
+
)
|
32 |
+
|
33 |
+
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
|
34 |
+
# Explicitly specify task="text-generation" so that the endpoint knows which task to run
|
35 |
return HuggingFaceEndpoint(
|
36 |
repo_id=model_id,
|
|
|
37 |
max_new_tokens=max_new_tokens,
|
38 |
temperature=temperature,
|
39 |
+
token=os.getenv("HF_TOKEN"),
|
40 |
+
task="text-generation"
|
41 |
)
|
42 |
|
43 |
def get_nasa_apod():
|
|
|
59 |
return "general_query"
|
60 |
|
61 |
def generate_follow_up(user_text):
|
62 |
+
"""
|
63 |
+
Generates a concise and conversational follow-up question related to the user's input.
|
64 |
+
"""
|
65 |
prompt_text = (
|
66 |
+
f"Given the user's question: '{user_text}', generate a SHORT and SIMPLE follow-up question. "
|
67 |
+
"Make it conversational and friendly. Example: 'Would you like to learn more about the six types of quarks?' "
|
68 |
+
"Do NOT provide long explanations—just ask a friendly follow-up question."
|
69 |
)
|
70 |
+
hf = get_llm_hf_inference(max_new_tokens=32, temperature=0.7)
|
71 |
return hf.invoke(input=prompt_text).strip()
|
72 |
|
73 |
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
74 |
+
"""
|
75 |
+
Generates HAL's response, making it more conversational and engaging.
|
76 |
+
"""
|
77 |
sentiment = analyze_sentiment(user_text)
|
78 |
action = predict_action(user_text)
|
79 |
|
|
|
87 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
88 |
return response, follow_up, chat_history, nasa_url
|
89 |
|
90 |
+
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
91 |
|
92 |
prompt = PromptTemplate.from_template(
|
93 |
+
(
|
94 |
+
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\n"
|
95 |
+
"AI: Keep responses conversational and engaging. Start with a friendly phrase like "
|
96 |
+
"'Certainly!', 'Of course!', or 'Great question!' before answering. "
|
97 |
+
"Keep responses concise but engaging.\nHAL:"
|
98 |
+
)
|
99 |
)
|
100 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
101 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
|
102 |
+
response = response.split("HAL:")[-1].strip()
|
103 |
|
104 |
chat_history.append({'role': 'user', 'content': user_text})
|
105 |
chat_history.append({'role': 'assistant', 'content': response})
|
106 |
|
107 |
if sentiment == "NEGATIVE":
|
108 |
+
response = "I'm here to help. Let me know what I can do for you. 😊"
|
109 |
|
110 |
follow_up = generate_follow_up(user_text)
|
111 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
|
|
164 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
165 |
st.markdown("</div>", unsafe_allow_html=True)
|
166 |
|
167 |
+
# --- Single Input Box for Both Initial and Follow-Up Messages ---
|
168 |
+
user_input = st.chat_input("Type your message here...") # Only ONE chat_input()
|
|
|
|
|
169 |
|
170 |
+
if user_input:
|
171 |
+
response, follow_up, st.session_state.chat_history, image_url = get_response(
|
172 |
+
system_message="You are a helpful AI assistant.",
|
173 |
+
user_text=user_input,
|
174 |
+
chat_history=st.session_state.chat_history
|
175 |
+
)
|
|
|
|
|
176 |
|
177 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
178 |
|
179 |
+
if image_url:
|
180 |
+
st.image(image_url, caption="NASA Image of the Day")
|
181 |
|
182 |
+
st.session_state.follow_up = follow_up
|
183 |
+
st.session_state.response_ready = True
|
|
|
184 |
|
|
|
185 |
if st.session_state.response_ready and st.session_state.follow_up:
|
186 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
|
187 |
+
st.session_state.response_ready = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|