Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,17 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import streamlit as st
|
|
|
4 |
from langchain_core.prompts import PromptTemplate
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
-
import
|
7 |
from config import NASA_API_KEY # Import the NASA API key from the configuration file
|
8 |
|
9 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
10 |
|
|
|
|
|
|
|
11 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
12 |
llm = HuggingFaceEndpoint(
|
13 |
repo_id=model_id,
|
@@ -29,9 +33,30 @@ def get_nasa_apod():
|
|
29 |
else:
|
30 |
return "I couldn't fetch data from NASA right now. Please try again later."
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def get_response(system_message, chat_history, user_text,
|
33 |
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
|
34 |
-
|
|
|
|
|
|
|
35 |
nasa_response = get_nasa_apod()
|
36 |
chat_history.append({'role': 'user', 'content': user_text})
|
37 |
chat_history.append({'role': 'assistant', 'content': nasa_response})
|
@@ -53,6 +78,11 @@ def get_response(system_message, chat_history, user_text,
|
|
53 |
|
54 |
chat_history.append({'role': 'user', 'content': user_text})
|
55 |
chat_history.append({'role': 'assistant', 'content': response})
|
|
|
|
|
|
|
|
|
|
|
56 |
return response, chat_history
|
57 |
|
58 |
# Streamlit setup
|
|
|
1 |
import os
|
2 |
+
import requests
|
3 |
import streamlit as st
|
4 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
5 |
from langchain_core.prompts import PromptTemplate
|
6 |
from langchain_core.output_parsers import StrOutputParser
|
7 |
+
from transformers import pipeline # for Sentiment Analysis
|
8 |
from config import NASA_API_KEY # Import the NASA API key from the configuration file
|
9 |
|
10 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
11 |
|
12 |
+
# Initialize sentiment analysis pipeline
|
13 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
14 |
+
|
15 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
16 |
llm = HuggingFaceEndpoint(
|
17 |
repo_id=model_id,
|
|
|
33 |
else:
|
34 |
return "I couldn't fetch data from NASA right now. Please try again later."
|
35 |
|
36 |
+
def analyze_sentiment(user_text):
|
37 |
+
"""
|
38 |
+
Analyzes the sentiment of the user's input to adjust responses.
|
39 |
+
"""
|
40 |
+
result = sentiment_analyzer(user_text)[0]
|
41 |
+
sentiment = result['label']
|
42 |
+
return sentiment
|
43 |
+
|
44 |
+
def predict_action(user_text):
|
45 |
+
"""
|
46 |
+
Predicts actions based on user input (e.g., fetch space info or general knowledge).
|
47 |
+
"""
|
48 |
+
if "NASA" in user_text or "space" in user_text:
|
49 |
+
return "nasa_info"
|
50 |
+
if "weather" in user_text:
|
51 |
+
return "weather_info"
|
52 |
+
return "general_query"
|
53 |
+
|
54 |
def get_response(system_message, chat_history, user_text,
|
55 |
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
|
56 |
+
sentiment = analyze_sentiment(user_text)
|
57 |
+
action = predict_action(user_text)
|
58 |
+
|
59 |
+
if action == "nasa_info":
|
60 |
nasa_response = get_nasa_apod()
|
61 |
chat_history.append({'role': 'user', 'content': user_text})
|
62 |
chat_history.append({'role': 'assistant', 'content': nasa_response})
|
|
|
78 |
|
79 |
chat_history.append({'role': 'user', 'content': user_text})
|
80 |
chat_history.append({'role': 'assistant', 'content': response})
|
81 |
+
|
82 |
+
# Modify response based on sentiment analysis (e.g., offer help for negative sentiments)
|
83 |
+
if sentiment == "NEGATIVE":
|
84 |
+
response = "I'm sorry to hear that. How can I assist you further?"
|
85 |
+
|
86 |
return response, chat_history
|
87 |
|
88 |
# Streamlit setup
|