Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -34,8 +34,7 @@ if "follow_up" not in st.session_state:
|
|
34 |
st.session_state.follow_up = ""
|
35 |
|
36 |
# β
Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
|
37 |
-
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.
|
38 |
-
#mistralai/Mistral-7B-Instruct-v0.3
|
39 |
return HuggingFaceEndpoint(
|
40 |
repo_id=model_id,
|
41 |
max_new_tokens=max_new_tokens,
|
@@ -91,7 +90,7 @@ def generate_follow_up(user_text):
|
|
91 |
"Ensure it's concise and structured exactly as requested without extra commentary."
|
92 |
)
|
93 |
|
94 |
-
hf = get_llm_hf_inference(max_new_tokens=30, temperature=0.
|
95 |
output = hf.invoke(input=prompt_text).strip()
|
96 |
|
97 |
# β
Extract the relevant part using regex to remove unwanted symbols or truncations
|
@@ -109,12 +108,7 @@ def get_response(system_message, user_text, max_new_tokens=800):
|
|
109 |
Generates a response from the chatbot, ensures conversation history is updated, and includes a follow-up question.
|
110 |
"""
|
111 |
|
112 |
-
# β
|
113 |
-
if "chat_history" not in st.session_state:
|
114 |
-
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
115 |
-
|
116 |
-
# β
Get Chat History Reference
|
117 |
-
chat_history = st.session_state.chat_history
|
118 |
|
119 |
# β
Detect Intent (NASA query vs General AI chat)
|
120 |
action = predict_action(user_text)
|
@@ -129,11 +123,8 @@ def get_response(system_message, user_text, max_new_tokens=800):
|
|
129 |
chat_history.append({'role': 'user', 'content': user_text})
|
130 |
chat_history.append({'role': 'assistant', 'content': response})
|
131 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
132 |
-
|
133 |
-
|
134 |
-
st.session_state.chat_history = chat_history
|
135 |
-
|
136 |
-
return response, follow_up, chat_history, nasa_url # β
Always return 4 values
|
137 |
|
138 |
# β
Format Conversation History for Model Input
|
139 |
formatted_chat_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
@@ -154,58 +145,26 @@ def get_response(system_message, user_text, max_new_tokens=800):
|
|
154 |
# β
Generate AI Response
|
155 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
156 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=formatted_chat_history))
|
157 |
-
|
158 |
-
# β
Extract and Clean Response
|
159 |
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
|
160 |
|
161 |
-
# β
Ensure Response is in English
|
162 |
response = ensure_english(response)
|
163 |
|
164 |
-
# β
Fallback Response Handling
|
165 |
if not response:
|
166 |
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
|
167 |
|
168 |
-
# β
Generate Follow-Up Question
|
169 |
follow_up = generate_follow_up(user_text)
|
170 |
|
171 |
-
# β
Append
|
172 |
chat_history.append({'role': 'user', 'content': user_text})
|
173 |
chat_history.append({'role': 'assistant', 'content': response})
|
174 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
|
|
175 |
|
176 |
-
|
177 |
-
st.session_state.chat_history = chat_history
|
178 |
-
|
179 |
-
return response, follow_up, chat_history, None # β
Ensure 4 values are returned
|
180 |
-
|
181 |
|
182 |
# β
Streamlit UI
|
183 |
st.title("π HAL - NASA AI Assistant")
|
184 |
|
185 |
-
# β
Justify all chatbot responses
|
186 |
-
st.markdown("""
|
187 |
-
<style>
|
188 |
-
.user-msg, .assistant-msg {
|
189 |
-
padding: 10px;
|
190 |
-
border-radius: 10px;
|
191 |
-
margin-bottom: 5px;
|
192 |
-
width: fit-content;
|
193 |
-
max-width: 80%;
|
194 |
-
text-align: justify;
|
195 |
-
}
|
196 |
-
.user-msg { background-color: #696969; color: white; }
|
197 |
-
.assistant-msg { background-color: #333333; color: white; }
|
198 |
-
.container { display: flex; flex-direction: column; align-items: flex-start; }
|
199 |
-
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
|
200 |
-
</style>
|
201 |
-
""", unsafe_allow_html=True)
|
202 |
-
|
203 |
-
# β
Reset Chat Button
|
204 |
-
if st.sidebar.button("Reset Chat"):
|
205 |
-
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
206 |
-
st.session_state.response_ready = False
|
207 |
-
st.session_state.follow_up = ""
|
208 |
-
|
209 |
# β
Display Chat History
|
210 |
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
211 |
for message in st.session_state.chat_history:
|
@@ -215,16 +174,11 @@ for message in st.session_state.chat_history:
|
|
215 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
216 |
st.markdown("</div>", unsafe_allow_html=True)
|
217 |
|
218 |
-
|
219 |
-
# β
Chat UI
|
220 |
user_input = st.chat_input("Type your message here...")
|
221 |
|
222 |
if user_input:
|
223 |
-
response, follow_up,
|
224 |
-
system_message="You are a helpful AI assistant.",
|
225 |
-
user_text=user_input,
|
226 |
-
chat_history=st.session_state.chat_history
|
227 |
-
)
|
228 |
|
229 |
if response:
|
230 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
@@ -235,9 +189,4 @@ if user_input:
|
|
235 |
if image_url:
|
236 |
st.image(image_url, caption="NASA Image of the Day")
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
if st.session_state.response_ready and st.session_state.follow_up:
|
241 |
-
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
|
242 |
-
st.session_state.response_ready = False
|
243 |
-
|
|
|
34 |
st.session_state.follow_up = ""
|
35 |
|
36 |
# β
Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
|
37 |
+
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.8):
|
|
|
38 |
return HuggingFaceEndpoint(
|
39 |
repo_id=model_id,
|
40 |
max_new_tokens=max_new_tokens,
|
|
|
90 |
"Ensure it's concise and structured exactly as requested without extra commentary."
|
91 |
)
|
92 |
|
93 |
+
hf = get_llm_hf_inference(max_new_tokens=30, temperature=0.8) # π₯ Lower temp for consistency
|
94 |
output = hf.invoke(input=prompt_text).strip()
|
95 |
|
96 |
# β
Extract the relevant part using regex to remove unwanted symbols or truncations
|
|
|
108 |
Generates a response from the chatbot, ensures conversation history is updated, and includes a follow-up question.
|
109 |
"""
|
110 |
|
111 |
+
chat_history = st.session_state.chat_history # β
Get Chat History Reference
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
# β
Detect Intent (NASA query vs General AI chat)
|
114 |
action = predict_action(user_text)
|
|
|
123 |
chat_history.append({'role': 'user', 'content': user_text})
|
124 |
chat_history.append({'role': 'assistant', 'content': response})
|
125 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
126 |
+
st.session_state.chat_history = chat_history # β
Update Session History
|
127 |
+
return response, follow_up, nasa_url
|
|
|
|
|
|
|
128 |
|
129 |
# β
Format Conversation History for Model Input
|
130 |
formatted_chat_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
|
|
145 |
# β
Generate AI Response
|
146 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
147 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=formatted_chat_history))
|
|
|
|
|
148 |
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
|
149 |
|
|
|
150 |
response = ensure_english(response)
|
151 |
|
|
|
152 |
if not response:
|
153 |
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
|
154 |
|
|
|
155 |
follow_up = generate_follow_up(user_text)
|
156 |
|
157 |
+
# β
Append to Chat History
|
158 |
chat_history.append({'role': 'user', 'content': user_text})
|
159 |
chat_history.append({'role': 'assistant', 'content': response})
|
160 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
161 |
+
st.session_state.chat_history = chat_history # β
Persist History
|
162 |
|
163 |
+
return response, follow_up, None
|
|
|
|
|
|
|
|
|
164 |
|
165 |
# β
Streamlit UI
|
166 |
st.title("π HAL - NASA AI Assistant")
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
# β
Display Chat History
|
169 |
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
170 |
for message in st.session_state.chat_history:
|
|
|
174 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
175 |
st.markdown("</div>", unsafe_allow_html=True)
|
176 |
|
177 |
+
# β
Chat Input
|
|
|
178 |
user_input = st.chat_input("Type your message here...")
|
179 |
|
180 |
if user_input:
|
181 |
+
response, follow_up, image_url = get_response("You are a helpful AI assistant.", user_input)
|
|
|
|
|
|
|
|
|
182 |
|
183 |
if response:
|
184 |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
|
|
189 |
if image_url:
|
190 |
st.image(image_url, caption="NASA Image of the Day")
|
191 |
|
192 |
+
st.session_state.response_ready = True
|
|
|
|
|
|
|
|
|
|