CCockrum commited on
Commit
def3a29
Β·
verified Β·
1 Parent(s): c0d7ed6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -71
app.py CHANGED
@@ -8,25 +8,20 @@ from langchain_core.prompts import PromptTemplate
8
  from langchain_core.output_parsers import StrOutputParser
9
  from transformers import pipeline
10
 
11
- # Use environment variables for keys
12
- HF_TOKEN = os.getenv("HF_TOKEN")
13
- if HF_TOKEN is None:
14
- raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")
15
-
16
- NASA_API_KEY = os.getenv("NASA_API_KEY")
17
- if NASA_API_KEY is None:
18
- raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
19
-
20
- # Set up Streamlit UI
21
  st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
22
 
23
- # --- Initialize Session State Variables ---
 
 
24
  if "chat_history" not in st.session_state:
25
  st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
26
  if "response_ready" not in st.session_state:
27
  st.session_state.response_ready = False
28
  if "follow_up" not in st.session_state:
29
  st.session_state.follow_up = ""
 
 
30
 
31
  # --- Set Up Model & API Functions ---
32
  model_id = "mistralai/Mistral-7B-Instruct-v0.3"
@@ -41,12 +36,12 @@ def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7)
41
  repo_id=model_id,
42
  max_new_tokens=max_new_tokens,
43
  temperature=temperature,
44
- token=HF_TOKEN,
45
  task="text-generation"
46
  )
47
 
48
  def get_nasa_apod():
49
- url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
50
  response = requests.get(url)
51
  if response.status_code == 200:
52
  data = response.json()
@@ -64,14 +59,11 @@ def predict_action(user_text):
64
  return "general_query"
65
 
66
  def generate_follow_up(user_text):
67
- """
68
- Generates two variant follow-up questions and randomly selects one.
69
- It also cleans up any unwanted quotation marks or extra meta commentary.
70
- """
71
  prompt_text = (
72
  f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
73
- "that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
74
- "and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary."
 
75
  )
76
  hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
77
  output = hf.invoke(input=prompt_text).strip()
@@ -82,15 +74,8 @@ def generate_follow_up(user_text):
82
  return random.choice(cleaned)
83
 
84
  def get_response(system_message, chat_history, user_text, max_new_tokens=256):
85
- """
86
- Generates HAL's answer with depth and a follow-up question.
87
- The prompt instructs the model to provide a detailed explanation and then generate a follow-up.
88
- If the answer comes back empty, a fallback answer is used.
89
- """
90
  sentiment = analyze_sentiment(user_text)
91
  action = predict_action(user_text)
92
-
93
- # Extract style instruction if present
94
  style_instruction = ""
95
  lower_text = user_text.lower()
96
  if "in the voice of" in lower_text or "speaking as" in lower_text:
@@ -117,24 +102,20 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
117
 
118
  style_clause = style_instruction if style_instruction else ""
119
 
120
- # Instruct the model to generate a detailed, in-depth answer.
121
  prompt = PromptTemplate.from_template(
122
  (
123
  "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
124
  "User: {user_text}.\n [/INST]\n"
125
- "AI: Please provide a detailed explanation in depth. "
126
- "Ensure your response covers the topic thoroughly and is written in a friendly, conversational style, "
127
- "starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
128
  "\nHAL:"
129
  )
130
  )
131
 
132
  chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
133
  response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
134
- # Remove any extra markers if present.
135
  response = response.split("HAL:")[-1].strip()
136
 
137
- # Fallback in case the generated answer is empty
138
  if not response:
139
  response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
140
 
@@ -150,7 +131,22 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
150
 
151
  return response, follow_up, chat_history, None
152
 
153
- # --- Chat UI ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  st.title("πŸš€ HAL - Your NASA AI Assistant")
155
  st.markdown("🌌 *Ask me about space, NASA, and beyond!*")
156
 
@@ -160,36 +156,13 @@ if st.sidebar.button("Reset Chat"):
160
  st.session_state.follow_up = ""
161
  st.experimental_rerun()
162
 
163
- st.markdown("""
164
- <style>
165
- .user-msg {
166
- background-color: #696969;
167
- color: white;
168
- padding: 10px;
169
- border-radius: 10px;
170
- margin-bottom: 5px;
171
- width: fit-content;
172
- max-width: 80%;
173
- }
174
- .assistant-msg {
175
- background-color: #333333;
176
- color: white;
177
- padding: 10px;
178
- border-radius: 10px;
179
- margin-bottom: 5px;
180
- width: fit-content;
181
- max-width: 80%;
182
- }
183
- .container {
184
- display: flex;
185
- flex-direction: column;
186
- align-items: flex-start;
187
- }
188
- @media (max-width: 600px) {
189
- .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
190
- }
191
- </style>
192
- """, unsafe_allow_html=True)
193
 
194
  user_input = st.chat_input("Type your message here...")
195
 
@@ -203,11 +176,3 @@ if user_input:
203
  st.image(image_url, caption="NASA Image of the Day")
204
  st.session_state.follow_up = follow_up
205
  st.session_state.response_ready = True
206
-
207
- st.markdown("<div class='container'>", unsafe_allow_html=True)
208
- for message in st.session_state.chat_history:
209
- if message["role"] == "user":
210
- st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
211
- else:
212
- st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
213
- st.markdown("</div>", unsafe_allow_html=True)
 
8
  from langchain_core.output_parsers import StrOutputParser
9
  from transformers import pipeline
10
 
11
+ # Must be the very first command!
 
 
 
 
 
 
 
 
 
12
  st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
13
 
14
+ # Appearance adjustments (if any) could be added here as well
15
+
16
+ # Initialize session state variables
17
  if "chat_history" not in st.session_state:
18
  st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
19
  if "response_ready" not in st.session_state:
20
  st.session_state.response_ready = False
21
  if "follow_up" not in st.session_state:
22
  st.session_state.follow_up = ""
23
+ if "saved_conversations" not in st.session_state:
24
+ st.session_state.saved_conversations = {} # Dictionary: conv_id -> chat_history
25
 
26
  # --- Set Up Model & API Functions ---
27
  model_id = "mistralai/Mistral-7B-Instruct-v0.3"
 
36
  repo_id=model_id,
37
  max_new_tokens=max_new_tokens,
38
  temperature=temperature,
39
+ token=os.getenv("HF_TOKEN"),
40
  task="text-generation"
41
  )
42
 
43
  def get_nasa_apod():
44
+ url = f"https://api.nasa.gov/planetary/apod?api_key={os.getenv('NASA_API_KEY')}"
45
  response = requests.get(url)
46
  if response.status_code == 200:
47
  data = response.json()
 
59
  return "general_query"
60
 
61
  def generate_follow_up(user_text):
 
 
 
 
62
  prompt_text = (
63
  f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
64
+ "that invite further discussion. For example, one variant might ask, "
65
+ "'Would you like to know more about the six types of quarks?' and another might ask, "
66
+ "'Would you like to explore another aspect of quantum physics?'. Do not include extra commentary."
67
  )
68
  hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
69
  output = hf.invoke(input=prompt_text).strip()
 
74
  return random.choice(cleaned)
75
 
76
  def get_response(system_message, chat_history, user_text, max_new_tokens=256):
 
 
 
 
 
77
  sentiment = analyze_sentiment(user_text)
78
  action = predict_action(user_text)
 
 
79
  style_instruction = ""
80
  lower_text = user_text.lower()
81
  if "in the voice of" in lower_text or "speaking as" in lower_text:
 
102
 
103
  style_clause = style_instruction if style_instruction else ""
104
 
 
105
  prompt = PromptTemplate.from_template(
106
  (
107
  "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
108
  "User: {user_text}.\n [/INST]\n"
109
+ "AI: Please answer the user's question in depth in a friendly, conversational tone, starting with a phrase like "
110
+ "'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
 
111
  "\nHAL:"
112
  )
113
  )
114
 
115
  chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
116
  response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
 
117
  response = response.split("HAL:")[-1].strip()
118
 
 
119
  if not response:
120
  response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
121
 
 
131
 
132
  return response, follow_up, chat_history, None
133
 
134
+ # --- Sidebar: Saved Conversations ---
135
+ st.sidebar.header("Saved Conversations")
136
+ if st.sidebar.button("Save Current Conversation"):
137
+ conv_id = f"Conv {len(st.session_state.saved_conversations) + 1}"
138
+ # Save a copy of the current conversation history
139
+ st.session_state.saved_conversations[conv_id] = st.session_state.chat_history.copy()
140
+ st.sidebar.success(f"Conversation saved as {conv_id}.")
141
+
142
+ # Display saved conversation links
143
+ if st.session_state.saved_conversations:
144
+ for conv_id in st.session_state.saved_conversations:
145
+ if st.sidebar.button(f"Load {conv_id}"):
146
+ st.session_state.chat_history = st.session_state.saved_conversations[conv_id].copy()
147
+ st.sidebar.info(f"Loaded {conv_id}.")
148
+
149
+ # --- Chat UI Rendering ---
150
  st.title("πŸš€ HAL - Your NASA AI Assistant")
151
  st.markdown("🌌 *Ask me about space, NASA, and beyond!*")
152
 
 
156
  st.session_state.follow_up = ""
157
  st.experimental_rerun()
158
 
159
+ st.markdown("<div class='container'>", unsafe_allow_html=True)
160
+ for message in st.session_state.chat_history:
161
+ if message["role"] == "user":
162
+ st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
163
+ else:
164
+ st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
165
+ st.markdown("</div>", unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
 
167
  user_input = st.chat_input("Type your message here...")
168
 
 
176
  st.image(image_url, caption="NASA Image of the Day")
177
  st.session_state.follow_up = follow_up
178
  st.session_state.response_ready = True