Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,72 +8,27 @@ from langchain_core.prompts import PromptTemplate
|
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from transformers import pipeline
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
13 |
|
14 |
-
#
|
15 |
-
user_bg_color = "#0078D7"
|
16 |
-
assistant_bg_color = "#333333"
|
17 |
-
text_color = "#FFFFFF"
|
18 |
-
font_choice = "sans serif"
|
19 |
-
|
20 |
-
# Inject custom CSS for appearance
|
21 |
-
custom_css = f"""
|
22 |
-
<style>
|
23 |
-
.user-msg {{
|
24 |
-
background-color: {user_bg_color};
|
25 |
-
color: {text_color};
|
26 |
-
padding: 10px;
|
27 |
-
border-radius: 10px;
|
28 |
-
margin-bottom: 5px;
|
29 |
-
width: fit-content;
|
30 |
-
max-width: 80%;
|
31 |
-
font-family: {font_choice};
|
32 |
-
}}
|
33 |
-
.assistant-msg {{
|
34 |
-
background-color: {assistant_bg_color};
|
35 |
-
color: {text_color};
|
36 |
-
padding: 10px;
|
37 |
-
border-radius: 10px;
|
38 |
-
margin-bottom: 5px;
|
39 |
-
width: fit-content;
|
40 |
-
max-width: 80%;
|
41 |
-
font-family: {font_choice};
|
42 |
-
}}
|
43 |
-
.container {{
|
44 |
-
display: flex;
|
45 |
-
flex-direction: column;
|
46 |
-
align-items: flex-start;
|
47 |
-
}}
|
48 |
-
@media (max-width: 600px) {{
|
49 |
-
.user-msg, .assistant-msg {{
|
50 |
-
font-size: 16px;
|
51 |
-
max-width: 100%;
|
52 |
-
}}
|
53 |
-
}}
|
54 |
-
</style>
|
55 |
-
"""
|
56 |
-
st.markdown(custom_css, unsafe_allow_html=True)
|
57 |
-
|
58 |
-
# Initialize session state variables
|
59 |
if "chat_history" not in st.session_state:
|
60 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
61 |
if "response_ready" not in st.session_state:
|
62 |
st.session_state.response_ready = False
|
63 |
if "follow_up" not in st.session_state:
|
64 |
st.session_state.follow_up = ""
|
65 |
-
if "saved_conversations" not in st.session_state:
|
66 |
-
st.session_state.saved_conversations = {} # dict mapping conv_id -> chat_history
|
67 |
-
|
68 |
-
# Set up keys from environment variables
|
69 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
70 |
-
if not HF_TOKEN:
|
71 |
-
raise ValueError("HF_TOKEN environment variable not set.")
|
72 |
-
NASA_API_KEY = os.getenv("NASA_API_KEY")
|
73 |
-
if not NASA_API_KEY:
|
74 |
-
raise ValueError("NASA_API_KEY environment variable not set.")
|
75 |
|
76 |
-
# --- Model & API
|
77 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
78 |
sentiment_analyzer = pipeline(
|
79 |
"sentiment-analysis",
|
@@ -97,20 +52,26 @@ def get_nasa_apod():
|
|
97 |
data = response.json()
|
98 |
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
|
99 |
else:
|
100 |
-
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
|
101 |
|
102 |
def analyze_sentiment(user_text):
|
103 |
result = sentiment_analyzer(user_text)[0]
|
104 |
return result['label']
|
105 |
|
106 |
def predict_action(user_text):
|
107 |
-
|
|
|
|
|
108 |
|
109 |
def generate_follow_up(user_text):
|
|
|
|
|
|
|
|
|
110 |
prompt_text = (
|
111 |
-
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions
|
112 |
-
"For example, one
|
113 |
-
"
|
114 |
)
|
115 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
116 |
output = hf.invoke(input=prompt_text).strip()
|
@@ -121,8 +82,15 @@ def generate_follow_up(user_text):
|
|
121 |
return random.choice(cleaned)
|
122 |
|
123 |
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
|
|
|
|
|
|
|
|
|
124 |
sentiment = analyze_sentiment(user_text)
|
125 |
action = predict_action(user_text)
|
|
|
|
|
126 |
style_instruction = ""
|
127 |
lower_text = user_text.lower()
|
128 |
if "in the voice of" in lower_text or "speaking as" in lower_text:
|
@@ -131,7 +99,6 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
131 |
style_instruction = match.group(2).strip().capitalize()
|
132 |
style_instruction = f" Please respond in the voice of {style_instruction}."
|
133 |
|
134 |
-
# Handle NASA queries separately
|
135 |
if action == "nasa_info":
|
136 |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
|
137 |
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
@@ -140,7 +107,7 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
140 |
follow_up = generate_follow_up(user_text)
|
141 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
142 |
return response, follow_up, chat_history, nasa_url
|
143 |
-
|
144 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
145 |
filtered_history = ""
|
146 |
for message in chat_history:
|
@@ -149,43 +116,41 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
149 |
filtered_history += f"{message['role']}: {message['content']}\n"
|
150 |
|
151 |
style_clause = style_instruction if style_instruction else ""
|
|
|
|
|
152 |
prompt = PromptTemplate.from_template(
|
153 |
(
|
154 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
155 |
"User: {user_text}.\n [/INST]\n"
|
156 |
-
"AI: Please provide a detailed
|
157 |
-
"
|
|
|
158 |
"\nHAL:"
|
159 |
)
|
160 |
)
|
|
|
161 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
162 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
|
|
163 |
response = response.split("HAL:")[-1].strip()
|
|
|
|
|
164 |
if not response:
|
165 |
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
|
|
|
166 |
chat_history.append({'role': 'user', 'content': user_text})
|
167 |
chat_history.append({'role': 'assistant', 'content': response})
|
|
|
168 |
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
|
169 |
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
|
170 |
chat_history[-1]['content'] = response
|
|
|
171 |
follow_up = generate_follow_up(user_text)
|
172 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
173 |
-
return response, follow_up, chat_history, None
|
174 |
-
|
175 |
-
# --- Sidebar: Save/Load Conversations ---
|
176 |
-
st.sidebar.header("Saved Conversations")
|
177 |
-
if st.sidebar.button("Save Current Conversation"):
|
178 |
-
conv_id = f"Conv {len(st.session_state.saved_conversations) + 1}"
|
179 |
-
st.session_state.saved_conversations[conv_id] = st.session_state.chat_history.copy()
|
180 |
-
st.sidebar.success(f"Conversation saved as {conv_id}.")
|
181 |
|
182 |
-
|
183 |
-
for conv_id in st.session_state.saved_conversations:
|
184 |
-
if st.sidebar.button(f"Load {conv_id}"):
|
185 |
-
st.session_state.chat_history = st.session_state.saved_conversations[conv_id].copy()
|
186 |
-
st.sidebar.info(f"Loaded {conv_id}.")
|
187 |
|
188 |
-
# ---
|
189 |
st.title("π HAL - Your NASA AI Assistant")
|
190 |
st.markdown("π *Ask me about space, NASA, and beyond!*")
|
191 |
|
@@ -195,13 +160,36 @@ if st.sidebar.button("Reset Chat"):
|
|
195 |
st.session_state.follow_up = ""
|
196 |
st.experimental_rerun()
|
197 |
|
198 |
-
st.markdown("
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
user_input = st.chat_input("Type your message here...")
|
207 |
|
@@ -215,3 +203,11 @@ if user_input:
|
|
215 |
st.image(image_url, caption="NASA Image of the Day")
|
216 |
st.session_state.follow_up = follow_up
|
217 |
st.session_state.response_ready = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from transformers import pipeline
|
10 |
|
11 |
+
# Use environment variables for keys
|
12 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
+
if HF_TOKEN is None:
|
14 |
+
raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")
|
15 |
+
|
16 |
+
NASA_API_KEY = os.getenv("NASA_API_KEY")
|
17 |
+
if NASA_API_KEY is None:
|
18 |
+
raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
|
19 |
+
|
20 |
+
# Set up Streamlit UI
|
21 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
22 |
|
23 |
+
# --- Initialize Session State Variables ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
if "chat_history" not in st.session_state:
|
25 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
26 |
if "response_ready" not in st.session_state:
|
27 |
st.session_state.response_ready = False
|
28 |
if "follow_up" not in st.session_state:
|
29 |
st.session_state.follow_up = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# --- Set Up Model & API Functions ---
|
32 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
33 |
sentiment_analyzer = pipeline(
|
34 |
"sentiment-analysis",
|
|
|
52 |
data = response.json()
|
53 |
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
|
54 |
else:
|
55 |
+
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
|
56 |
|
57 |
def analyze_sentiment(user_text):
|
58 |
result = sentiment_analyzer(user_text)[0]
|
59 |
return result['label']
|
60 |
|
61 |
def predict_action(user_text):
|
62 |
+
if "NASA" in user_text or "space" in user_text:
|
63 |
+
return "nasa_info"
|
64 |
+
return "general_query"
|
65 |
|
66 |
def generate_follow_up(user_text):
|
67 |
+
"""
|
68 |
+
Generates two variant follow-up questions and randomly selects one.
|
69 |
+
It also cleans up any unwanted quotation marks or extra meta commentary.
|
70 |
+
"""
|
71 |
prompt_text = (
|
72 |
+
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
|
73 |
+
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
|
74 |
+
"and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary."
|
75 |
)
|
76 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
77 |
output = hf.invoke(input=prompt_text).strip()
|
|
|
82 |
return random.choice(cleaned)
|
83 |
|
84 |
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
85 |
+
"""
|
86 |
+
Generates HAL's answer with depth and a follow-up question.
|
87 |
+
The prompt instructs the model to provide a detailed explanation and then generate a follow-up.
|
88 |
+
If the answer comes back empty, a fallback answer is used.
|
89 |
+
"""
|
90 |
sentiment = analyze_sentiment(user_text)
|
91 |
action = predict_action(user_text)
|
92 |
+
|
93 |
+
# Extract style instruction if present
|
94 |
style_instruction = ""
|
95 |
lower_text = user_text.lower()
|
96 |
if "in the voice of" in lower_text or "speaking as" in lower_text:
|
|
|
99 |
style_instruction = match.group(2).strip().capitalize()
|
100 |
style_instruction = f" Please respond in the voice of {style_instruction}."
|
101 |
|
|
|
102 |
if action == "nasa_info":
|
103 |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
|
104 |
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
|
|
107 |
follow_up = generate_follow_up(user_text)
|
108 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
109 |
return response, follow_up, chat_history, nasa_url
|
110 |
+
|
111 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
112 |
filtered_history = ""
|
113 |
for message in chat_history:
|
|
|
116 |
filtered_history += f"{message['role']}: {message['content']}\n"
|
117 |
|
118 |
style_clause = style_instruction if style_instruction else ""
|
119 |
+
|
120 |
+
# Instruct the model to generate a detailed, in-depth answer.
|
121 |
prompt = PromptTemplate.from_template(
|
122 |
(
|
123 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
124 |
"User: {user_text}.\n [/INST]\n"
|
125 |
+
"AI: Please provide a detailed explanation in depth. "
|
126 |
+
"Ensure your response covers the topic thoroughly and is written in a friendly, conversational style, "
|
127 |
+
"starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
|
128 |
"\nHAL:"
|
129 |
)
|
130 |
)
|
131 |
+
|
132 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
133 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
134 |
+
# Remove any extra markers if present.
|
135 |
response = response.split("HAL:")[-1].strip()
|
136 |
+
|
137 |
+
# Fallback in case the generated answer is empty
|
138 |
if not response:
|
139 |
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
|
140 |
+
|
141 |
chat_history.append({'role': 'user', 'content': user_text})
|
142 |
chat_history.append({'role': 'assistant', 'content': response})
|
143 |
+
|
144 |
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
|
145 |
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
|
146 |
chat_history[-1]['content'] = response
|
147 |
+
|
148 |
follow_up = generate_follow_up(user_text)
|
149 |
chat_history.append({'role': 'assistant', 'content': follow_up})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
return response, follow_up, chat_history, None
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
# --- Chat UI ---
|
154 |
st.title("π HAL - Your NASA AI Assistant")
|
155 |
st.markdown("π *Ask me about space, NASA, and beyond!*")
|
156 |
|
|
|
160 |
st.session_state.follow_up = ""
|
161 |
st.experimental_rerun()
|
162 |
|
163 |
+
st.markdown("""
|
164 |
+
<style>
|
165 |
+
.user-msg {
|
166 |
+
background-color: #696969;
|
167 |
+
color: white;
|
168 |
+
padding: 10px;
|
169 |
+
border-radius: 10px;
|
170 |
+
margin-bottom: 5px;
|
171 |
+
width: fit-content;
|
172 |
+
max-width: 80%;
|
173 |
+
}
|
174 |
+
.assistant-msg {
|
175 |
+
background-color: #333333;
|
176 |
+
color: white;
|
177 |
+
padding: 10px;
|
178 |
+
border-radius: 10px;
|
179 |
+
margin-bottom: 5px;
|
180 |
+
width: fit-content;
|
181 |
+
max-width: 80%;
|
182 |
+
}
|
183 |
+
.container {
|
184 |
+
display: flex;
|
185 |
+
flex-direction: column;
|
186 |
+
align-items: flex-start;
|
187 |
+
}
|
188 |
+
@media (max-width: 600px) {
|
189 |
+
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
|
190 |
+
}
|
191 |
+
</style>
|
192 |
+
""", unsafe_allow_html=True)
|
193 |
|
194 |
user_input = st.chat_input("Type your message here...")
|
195 |
|
|
|
203 |
st.image(image_url, caption="NASA Image of the Day")
|
204 |
st.session_state.follow_up = follow_up
|
205 |
st.session_state.response_ready = True
|
206 |
+
|
207 |
+
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
208 |
+
for message in st.session_state.chat_history:
|
209 |
+
if message["role"] == "user":
|
210 |
+
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
211 |
+
else:
|
212 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
213 |
+
st.markdown("</div>", unsafe_allow_html=True)
|