CCockrum commited on
Commit
e653ea8
Β·
verified Β·
1 Parent(s): c78f510

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +144 -46
app.py CHANGED
@@ -1,106 +1,204 @@
1
  import os
2
  import re
3
  import requests
 
4
  import streamlit as st
5
  from langchain_huggingface import HuggingFaceEndpoint
6
  from langchain_core.prompts import PromptTemplate
7
  from langchain_core.output_parsers import StrOutputParser
8
  from transformers import pipeline
9
- from langdetect import detect
 
 
 
 
10
 
11
  # βœ… Environment Variables
12
  HF_TOKEN = os.getenv("HF_TOKEN")
13
- NASA_API_KEY = os.getenv("NASA_API_KEY")
14
-
15
- if not HF_TOKEN:
16
  raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
17
 
18
- if not NASA_API_KEY:
 
19
  raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
20
 
21
- # βœ… Set Streamlit
22
  st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
23
 
24
- # βœ… Ensure Session State for Chat History
25
  if "chat_history" not in st.session_state:
26
  st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
 
 
 
 
27
 
28
- # βœ… Define AI Model
29
  def get_llm_hf_inference(model_id="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=512, temperature=0.7):
30
  return HuggingFaceEndpoint(
31
  repo_id=model_id,
32
  max_new_tokens=max_new_tokens,
33
  temperature=temperature,
34
  token=HF_TOKEN,
35
- task="text-generation"
 
36
  )
37
 
38
- # βœ… Generate Follow-Up Question (Preserving Format)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  def generate_follow_up(user_text):
 
 
40
  prompt_text = (
41
  f"Given the user's question: '{user_text}', generate a SHORT follow-up question in the format: "
42
- "'Would you like to learn more about [related topic] or explore something else?'."
43
- "Ensure it is concise and strictly follows this format."
44
  )
45
-
46
- hf = get_llm_hf_inference(max_new_tokens=30, temperature=0.6)
47
  output = hf.invoke(input=prompt_text).strip()
48
 
 
49
  cleaned_output = re.sub(r"```|''|\"", "", output).strip()
50
 
51
- return cleaned_output if "Would you like to learn more about" in cleaned_output else "Would you like to explore another related topic or ask about something else?"
 
 
52
 
53
- # βœ… Get AI Response and Maintain Chat History
54
- def get_response(user_text):
55
- """Generates a response and updates chat history."""
56
-
57
- hf = get_llm_hf_inference(max_new_tokens=512, temperature=0.9)
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
- # Format chat history for context
60
- filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in st.session_state.chat_history)
 
 
61
 
62
- # Create prompt
63
  prompt = PromptTemplate.from_template(
64
- "[INST] You are a helpful AI assistant.\n\nCurrent Conversation:\n{chat_history}\n\n"
65
  "User: {user_text}.\n [/INST]\n"
66
- "AI: Provide a detailed but concise explanation with depth. "
67
- "Ensure a friendly, engaging tone."
68
  "\nHAL:"
69
  )
70
 
71
  chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
72
- response = chat.invoke(input=dict(user_text=user_text, chat_history=filtered_history))
73
  response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
74
 
75
- # Generate follow-up question
 
 
 
 
76
  follow_up = generate_follow_up(user_text)
77
 
78
- # βœ… Preserve conversation history
79
- st.session_state.chat_history.append({'role': 'user', 'content': user_text})
80
- st.session_state.chat_history.append({'role': 'assistant', 'content': response})
81
- st.session_state.chat_history.append({'role': 'assistant', 'content': follow_up})
 
82
 
83
- return response, follow_up
84
 
85
- # βœ… Chat UI
86
  st.title("πŸš€ HAL - NASA AI Assistant")
87
 
88
- # βœ… Display Conversation History BEFORE User Input
89
- for message in st.session_state.chat_history:
90
- if message["role"] == "user":
91
- st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
92
- else:
93
- st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
- # βœ… User Input
96
  user_input = st.chat_input("Type your message here...")
97
 
98
  if user_input:
99
- response, follow_up = get_response(user_input)
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
- # βœ… Display AI response
102
- st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
103
 
104
- # βœ… Display Follow-Up Question
105
- st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {follow_up}</div>", unsafe_allow_html=True)
 
106
 
 
1
  import os
2
  import re
3
  import requests
4
+ import torch
5
  import streamlit as st
6
  from langchain_huggingface import HuggingFaceEndpoint
7
  from langchain_core.prompts import PromptTemplate
8
  from langchain_core.output_parsers import StrOutputParser
9
  from transformers import pipeline
10
+ from langdetect import detect # Ensure this package is installed
11
+
12
+ # βœ… Check for GPU or Default to CPU
13
+ device = "cuda" if torch.cuda.is_available() else "cpu"
14
+ print(f"βœ… Using device: {device}") # Debugging info
15
 
16
  # βœ… Environment Variables
17
  HF_TOKEN = os.getenv("HF_TOKEN")
18
+ if HF_TOKEN is None:
 
 
19
  raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
20
 
21
+ NASA_API_KEY = os.getenv("NASA_API_KEY")
22
+ if NASA_API_KEY is None:
23
  raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
24
 
25
+ # βœ… Set Up Streamlit
26
  st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
27
 
28
+ # βœ… Initialize Session State Variables (Ensuring Chat History Persists)
29
  if "chat_history" not in st.session_state:
30
  st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
31
+ if "response_ready" not in st.session_state:
32
+ st.session_state.response_ready = False
33
+ if "follow_up" not in st.session_state:
34
+ st.session_state.follow_up = ""
35
 
36
+ # βœ… Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
37
  def get_llm_hf_inference(model_id="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=512, temperature=0.7):
38
  return HuggingFaceEndpoint(
39
  repo_id=model_id,
40
  max_new_tokens=max_new_tokens,
41
  temperature=temperature,
42
  token=HF_TOKEN,
43
+ task="text-generation",
44
+ device=-1 if device == "cpu" else 0 # βœ… Force CPU (-1) or GPU (0)
45
  )
46
 
47
+ # βœ… NASA API Function
48
+ def get_nasa_apod():
49
+ url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
50
+ response = requests.get(url)
51
+ if response.status_code == 200:
52
+ data = response.json()
53
+ return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
54
+ return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
55
+
56
+ # βœ… Sentiment Analysis (Now Uses Explicit Device)
57
+ sentiment_analyzer = pipeline(
58
+ "sentiment-analysis",
59
+ model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
60
+ device=-1 if device == "cpu" else 0 # βœ… Force CPU (-1) or GPU (0)
61
+ )
62
+
63
+ def analyze_sentiment(user_text):
64
+ result = sentiment_analyzer(user_text)[0]
65
+ return result['label']
66
+
67
+ # βœ… Intent Detection
68
+ def predict_action(user_text):
69
+ if "NASA" in user_text.lower() or "space" in user_text.lower():
70
+ return "nasa_info"
71
+ return "general_query"
72
+
73
+ # βœ… Ensure English Responses
74
+ def ensure_english(text):
75
+ try:
76
+ detected_lang = detect(text)
77
+ if detected_lang != "en":
78
+ return "⚠️ Sorry, I only respond in English. Can you rephrase your question?"
79
+ except:
80
+ return "⚠️ Language detection failed. Please ask your question again."
81
+ return text
82
+
83
+ # βœ… Follow-Up Question Generation
84
  def generate_follow_up(user_text):
85
+ """Generates a structured follow-up question in a concise format."""
86
+
87
  prompt_text = (
88
  f"Given the user's question: '{user_text}', generate a SHORT follow-up question in the format: "
89
+ "'Would you like to learn more about [related topic] or explore something else?'. "
90
+ "Ensure it's concise and structured exactly as requested without extra commentary."
91
  )
92
+
93
+ hf = get_llm_hf_inference(max_new_tokens=30, temperature=0.6) # πŸ”₯ Lower temp for consistency
94
  output = hf.invoke(input=prompt_text).strip()
95
 
96
+ # βœ… Extract the relevant part using regex to remove unwanted symbols or truncations
97
  cleaned_output = re.sub(r"```|''|\"", "", output).strip()
98
 
99
+ # βœ… Ensure output is formatted correctly
100
+ if "Would you like to learn more about" not in cleaned_output:
101
+ cleaned_output = "Would you like to explore another related topic or ask about something else?"
102
 
103
+ return cleaned_output
104
+
105
+ # βœ… Main Response Function
106
+ def get_response(system_message, chat_history, user_text, max_new_tokens=512):
107
+ action = predict_action(user_text)
108
+
109
+ # βœ… Handle NASA-Specific Queries
110
+ if action == "nasa_info":
111
+ nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
112
+ response = f"**{nasa_title}**\n\n{nasa_explanation}"
113
+ follow_up = generate_follow_up(user_text)
114
+ chat_history.extend([
115
+ {'role': 'user', 'content': user_text},
116
+ {'role': 'assistant', 'content': response},
117
+ {'role': 'assistant', 'content': follow_up}
118
+ ])
119
+ return response, follow_up, chat_history, nasa_url
120
 
121
+ # βœ… Invoke Hugging Face Model
122
+ hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
123
+
124
+ filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
125
 
 
126
  prompt = PromptTemplate.from_template(
127
+ "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
128
  "User: {user_text}.\n [/INST]\n"
129
+ "AI: Provide a detailed explanation. Use a conversational tone. "
130
+ "🚨 Answer **only in English**."
131
  "\nHAL:"
132
  )
133
 
134
  chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
135
+ response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
136
  response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
137
 
138
+ response = ensure_english(response)
139
+
140
+ if not response:
141
+ response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
142
+
143
  follow_up = generate_follow_up(user_text)
144
 
145
+ chat_history.extend([
146
+ {'role': 'user', 'content': user_text},
147
+ {'role': 'assistant', 'content': response},
148
+ {'role': 'assistant', 'content': follow_up}
149
+ ])
150
 
151
+ return response, follow_up, chat_history, None
152
 
153
+ # βœ… Streamlit UI
154
  st.title("πŸš€ HAL - NASA AI Assistant")
155
 
156
+ # βœ… Justify all chatbot responses
157
+ st.markdown("""
158
+ <style>
159
+ .user-msg, .assistant-msg {
160
+ padding: 10px;
161
+ border-radius: 10px;
162
+ margin-bottom: 5px;
163
+ width: fit-content;
164
+ max-width: 80%;
165
+ text-align: justify;
166
+ }
167
+ .user-msg { background-color: #696969; color: white; }
168
+ .assistant-msg { background-color: #333333; color: white; }
169
+ .container { display: flex; flex-direction: column; align-items: flex-start; }
170
+ @media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
171
+ </style>
172
+ """, unsafe_allow_html=True)
173
+
174
+ # βœ… Reset Chat Button
175
+ if st.sidebar.button("Reset Chat"):
176
+ st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
177
+ st.session_state.response_ready = False
178
+ st.session_state.follow_up = ""
179
 
180
+ # βœ… Chat UI
181
  user_input = st.chat_input("Type your message here...")
182
 
183
  if user_input:
184
+ response, follow_up, st.session_state.chat_history, image_url = get_response(
185
+ system_message="You are a helpful AI assistant.",
186
+ user_text=user_input,
187
+ chat_history=st.session_state.chat_history
188
+ )
189
+
190
+ if response:
191
+ st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
192
+
193
+ if follow_up:
194
+ st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {follow_up}</div>", unsafe_allow_html=True)
195
+
196
+ if image_url:
197
+ st.image(image_url, caption="NASA Image of the Day")
198
 
199
+ st.session_state.response_ready = True
 
200
 
201
+ if st.session_state.response_ready and st.session_state.follow_up:
202
+ st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
203
+ st.session_state.response_ready = False
204