Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,95 +1,113 @@
|
|
1 |
import os
|
2 |
-
import re
|
3 |
-
import requests
|
4 |
-
import torch
|
5 |
import streamlit as st
|
6 |
-
from
|
7 |
-
|
8 |
-
from langchain_core.output_parsers import StrOutputParser
|
9 |
-
from transformers import pipeline
|
10 |
-
from langdetect import detect # Ensure this package is installed
|
11 |
|
12 |
-
#
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
print(f"β
Using device: {device}") # Debugging info
|
15 |
-
|
16 |
-
# β
Environment Variables
|
17 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
18 |
-
if HF_TOKEN is None:
|
19 |
-
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
|
20 |
-
|
21 |
-
NASA_API_KEY = os.getenv("NASA_API_KEY")
|
22 |
-
if NASA_API_KEY is None:
|
23 |
-
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
|
24 |
-
|
25 |
-
# β
Set Up Streamlit
|
26 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
27 |
|
28 |
-
#
|
29 |
if "chat_history" not in st.session_state:
|
30 |
-
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
return HuggingFaceEndpoint(
|
35 |
-
repo_id=model_id,
|
36 |
-
max_new_tokens=max_new_tokens,
|
37 |
-
temperature=temperature, # π₯ Lowered temperature for more factual and structured responses
|
38 |
-
token=HF_TOKEN,
|
39 |
-
task="text-generation",
|
40 |
-
device=-1 if device == "cpu" else 0 # β
Force CPU (-1) or GPU (0)
|
41 |
-
)
|
42 |
|
43 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def ensure_english(text):
|
45 |
try:
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
except:
|
50 |
-
return
|
51 |
-
return text
|
52 |
-
|
53 |
-
# β
Main Response Function (Fixing Repetition & Context)
|
54 |
-
def get_response(system_message, chat_history, user_text, max_new_tokens=800):
|
55 |
-
# β
Ensure conversation history is included correctly
|
56 |
-
filtered_history = "\n".join(
|
57 |
-
f"{msg['role'].capitalize()}: {msg['content']}"
|
58 |
-
for msg in chat_history[-5:] # β
Only keep the last 5 exchanges to prevent overflow
|
59 |
-
)
|
60 |
-
|
61 |
-
prompt = PromptTemplate.from_template(
|
62 |
-
"[INST] You are a highly knowledgeable AI assistant. Answer concisely, avoid repetition, and structure responses well."
|
63 |
-
"\n\nCONTEXT:\n{chat_history}\n"
|
64 |
-
"\nLATEST USER INPUT:\nUser: {user_text}\n"
|
65 |
-
"\n[END CONTEXT]\n"
|
66 |
-
"Assistant:"
|
67 |
-
)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
st.markdown("""
|
94 |
<style>
|
95 |
.user-msg, .assistant-msg {
|
@@ -100,29 +118,38 @@ st.markdown("""
|
|
100 |
max-width: 80%;
|
101 |
text-align: justify;
|
102 |
}
|
103 |
-
.user-msg { background-color: #696969; color: white; }
|
104 |
.assistant-msg { background-color: #333333; color: white; }
|
105 |
-
.container { display: flex; flex-direction: column;
|
106 |
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
|
107 |
</style>
|
108 |
""", unsafe_allow_html=True)
|
109 |
|
110 |
-
#
|
111 |
-
|
112 |
-
|
113 |
-
if user_input:
|
114 |
-
# Get response and update chat history
|
115 |
-
response, st.session_state.chat_history = get_response(
|
116 |
-
system_message="You are a helpful AI assistant.",
|
117 |
-
user_text=user_input,
|
118 |
-
chat_history=st.session_state.chat_history
|
119 |
-
)
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
+
from langdetect import detect
|
4 |
+
import torch
|
|
|
|
|
|
|
5 |
|
6 |
+
# Check if GPU is available but don't load anything yet
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
9 |
|
10 |
+
# Initialize session state variables
|
11 |
if "chat_history" not in st.session_state:
|
12 |
+
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you with NASA-related information today?"}]
|
13 |
|
14 |
+
if "model_loaded" not in st.session_state:
|
15 |
+
st.session_state.model_loaded = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Load environment variables
|
18 |
+
def load_api_keys():
|
19 |
+
hf_token = os.getenv("HF_TOKEN")
|
20 |
+
nasa_api_key = os.getenv("NASA_API_KEY")
|
21 |
+
|
22 |
+
missing_keys = []
|
23 |
+
if not hf_token:
|
24 |
+
missing_keys.append("HF_TOKEN")
|
25 |
+
if not nasa_api_key:
|
26 |
+
missing_keys.append("NASA_API_KEY")
|
27 |
+
|
28 |
+
return hf_token, nasa_api_key, missing_keys
|
29 |
+
|
30 |
+
# Lazy-load the model only when needed
|
31 |
+
def load_model():
|
32 |
+
with st.spinner("Loading AI model... This may take a moment."):
|
33 |
+
try:
|
34 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
35 |
+
from langchain_core.prompts import PromptTemplate
|
36 |
+
from langchain_core.output_parsers import StrOutputParser
|
37 |
+
|
38 |
+
hf_token, _, _ = load_api_keys()
|
39 |
+
|
40 |
+
# Use a smaller model if you're having resource issues
|
41 |
+
llm = HuggingFaceEndpoint(
|
42 |
+
repo_id="meta-llama/Llama-2-7b-chat-hf", # Consider a smaller model like "distilroberta-base"
|
43 |
+
max_new_tokens=800,
|
44 |
+
temperature=0.3,
|
45 |
+
token=hf_token,
|
46 |
+
task="text-generation",
|
47 |
+
device=-1 if device == "cpu" else 0
|
48 |
+
)
|
49 |
+
st.session_state.model_loaded = True
|
50 |
+
st.session_state.llm = llm
|
51 |
+
st.session_state.prompt = PromptTemplate.from_template(
|
52 |
+
"[INST] You are HAL, a NASA AI assistant with deep knowledge of space, astronomy, and NASA missions. "
|
53 |
+
"Answer concisely and accurately.\n\n"
|
54 |
+
"CONTEXT:\n{chat_history}\n"
|
55 |
+
"\nLATEST USER INPUT:\nUser: {user_text}\n"
|
56 |
+
"[END CONTEXT]\n"
|
57 |
+
"Assistant:"
|
58 |
+
)
|
59 |
+
return True
|
60 |
+
except Exception as e:
|
61 |
+
st.error(f"Error loading model: {str(e)}")
|
62 |
+
return False
|
63 |
+
|
64 |
+
# Ensure English responses
|
65 |
def ensure_english(text):
|
66 |
try:
|
67 |
+
if text and len(text) > 5: # Only check if there's meaningful text
|
68 |
+
detected_lang = detect(text)
|
69 |
+
if detected_lang != "en":
|
70 |
+
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?"
|
71 |
+
return text
|
72 |
except:
|
73 |
+
return text # Return original if detection fails
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
# Get response from the model
|
76 |
+
def get_response(user_text):
|
77 |
+
if not st.session_state.model_loaded:
|
78 |
+
if not load_model():
|
79 |
+
return "Sorry, I'm having trouble loading. Please try again or check your environment setup."
|
80 |
|
81 |
+
try:
|
82 |
+
# Prepare conversation history
|
83 |
+
filtered_history = "\n".join(
|
84 |
+
f"{msg['role'].capitalize()}: {msg['content']}"
|
85 |
+
for msg in st.session_state.chat_history[-5:]
|
86 |
+
)
|
87 |
+
|
88 |
+
from langchain_core.output_parsers import StrOutputParser
|
89 |
+
|
90 |
+
# Create and invoke the chat pipeline
|
91 |
+
chat = st.session_state.prompt | st.session_state.llm.bind(skip_prompt=True) | StrOutputParser()
|
92 |
+
|
93 |
+
response = chat.invoke({
|
94 |
+
"user_text": user_text,
|
95 |
+
"chat_history": filtered_history
|
96 |
+
})
|
97 |
+
|
98 |
+
# Clean up response
|
99 |
+
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
|
100 |
+
response = ensure_english(response)
|
101 |
+
|
102 |
+
if not response:
|
103 |
+
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
|
104 |
+
|
105 |
+
return response
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
return f"I encountered an error: {str(e)}. Please try again with a different question."
|
109 |
+
|
110 |
+
# UI Styling
|
111 |
st.markdown("""
|
112 |
<style>
|
113 |
.user-msg, .assistant-msg {
|
|
|
118 |
max-width: 80%;
|
119 |
text-align: justify;
|
120 |
}
|
121 |
+
.user-msg { background-color: #696969; color: white; margin-left: auto; }
|
122 |
.assistant-msg { background-color: #333333; color: white; }
|
123 |
+
.container { display: flex; flex-direction: column; }
|
124 |
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
|
125 |
</style>
|
126 |
""", unsafe_allow_html=True)
|
127 |
|
128 |
+
# Main UI
|
129 |
+
st.title("π HAL - NASA AI Assistant")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
# Check for API keys before allowing interaction
|
132 |
+
hf_token, nasa_api_key, missing_keys = load_api_keys()
|
133 |
+
if missing_keys:
|
134 |
+
st.error(f"Missing environment variables: {', '.join(missing_keys)}. Please set them to use this application.")
|
135 |
+
else:
|
136 |
+
# Chat interface
|
137 |
+
user_input = st.chat_input("Ask me about NASA, space missions, or astronomy...")
|
138 |
+
|
139 |
+
if user_input:
|
140 |
+
# Add user message to history
|
141 |
+
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
142 |
+
|
143 |
+
# Get AI response
|
144 |
+
with st.spinner("Thinking..."):
|
145 |
+
response = get_response(user_input)
|
146 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
147 |
+
|
148 |
+
# Display chat history
|
149 |
+
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
150 |
+
for message in st.session_state.chat_history:
|
151 |
+
if message["role"] == "user":
|
152 |
+
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
153 |
+
else:
|
154 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
155 |
+
st.markdown("</div>", unsafe_allow_html=True)
|