Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -34,7 +34,7 @@ if "follow_up" not in st.session_state:
|
|
34 |
st.session_state.follow_up = ""
|
35 |
|
36 |
# β
Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
|
37 |
-
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.
|
38 |
#mistralai/Mistral-7B-Instruct-v0.3
|
39 |
return HuggingFaceEndpoint(
|
40 |
repo_id=model_id,
|
@@ -91,7 +91,7 @@ def generate_follow_up(user_text):
|
|
91 |
"Ensure it's concise and structured exactly as requested without extra commentary."
|
92 |
)
|
93 |
|
94 |
-
hf = get_llm_hf_inference(max_new_tokens=30, temperature=0.
|
95 |
output = hf.invoke(input=prompt_text).strip()
|
96 |
|
97 |
# β
Extract the relevant part using regex to remove unwanted symbols or truncations
|
@@ -120,7 +120,7 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=800):
|
|
120 |
return response, follow_up, chat_history, nasa_url
|
121 |
|
122 |
# β
Invoke Hugging Face Model
|
123 |
-
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.
|
124 |
|
125 |
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
126 |
|
|
|
34 |
st.session_state.follow_up = ""
|
35 |
|
36 |
# β
Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
|
37 |
+
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.7):
|
38 |
#mistralai/Mistral-7B-Instruct-v0.3
|
39 |
return HuggingFaceEndpoint(
|
40 |
repo_id=model_id,
|
|
|
91 |
"Ensure it's concise and structured exactly as requested without extra commentary."
|
92 |
)
|
93 |
|
94 |
+
hf = get_llm_hf_inference(max_new_tokens=30, temperature=0.3) # π₯ Lower temp for consistency
|
95 |
output = hf.invoke(input=prompt_text).strip()
|
96 |
|
97 |
# β
Extract the relevant part using regex to remove unwanted symbols or truncations
|
|
|
120 |
return response, follow_up, chat_history, nasa_url
|
121 |
|
122 |
# β
Invoke Hugging Face Model
|
123 |
+
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.7)
|
124 |
|
125 |
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
126 |
|