Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,11 +7,11 @@ from langchain_huggingface import HuggingFaceEndpoint
|
|
7 |
from langchain_core.prompts import PromptTemplate
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from transformers import pipeline
|
10 |
-
from langdetect import detect
|
11 |
|
12 |
# β
Check for GPU or Default to CPU
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
print(f"β
Using device: {device}")
|
15 |
|
16 |
# β
Environment Variables
|
17 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -25,23 +25,21 @@ if NASA_API_KEY is None:
|
|
25 |
# β
Set Up Streamlit
|
26 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
27 |
|
28 |
-
# β
|
29 |
if "chat_history" not in st.session_state:
|
30 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
31 |
if "response_ready" not in st.session_state:
|
32 |
st.session_state.response_ready = False
|
33 |
-
if "follow_up" not in st.session_state:
|
34 |
-
st.session_state.follow_up = ""
|
35 |
|
36 |
-
# β
Initialize Hugging Face Model (CPU/GPU
|
37 |
-
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.
|
38 |
return HuggingFaceEndpoint(
|
39 |
repo_id=model_id,
|
40 |
max_new_tokens=max_new_tokens,
|
41 |
temperature=temperature,
|
42 |
token=HF_TOKEN,
|
43 |
task="text-generation",
|
44 |
-
device=-1 if device == "cpu" else 0
|
45 |
)
|
46 |
|
47 |
# β
NASA API Function
|
@@ -57,7 +55,7 @@ def get_nasa_apod():
|
|
57 |
sentiment_analyzer = pipeline(
|
58 |
"sentiment-analysis",
|
59 |
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
|
60 |
-
device=-1 if device == "cpu" else 0
|
61 |
)
|
62 |
|
63 |
def analyze_sentiment(user_text):
|
@@ -70,73 +68,56 @@ def predict_action(user_text):
|
|
70 |
return "nasa_info"
|
71 |
return "general_query"
|
72 |
|
73 |
-
# β
Ensure English Responses
|
74 |
def ensure_english(text):
|
75 |
-
"""Ensures the response is in English, preventing false language detection errors."""
|
76 |
try:
|
77 |
detected_lang = detect(text)
|
78 |
-
if detected_lang
|
79 |
-
return
|
80 |
except:
|
81 |
-
|
82 |
-
|
83 |
-
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?"
|
84 |
|
85 |
-
# β
Main Response Function (
|
86 |
-
def get_response(system_message, user_text, max_new_tokens=800):
|
87 |
-
"""Generates a response and ensures conversation history is updated."""
|
88 |
-
|
89 |
-
chat_history = st.session_state.chat_history # β
Get Chat History
|
90 |
-
|
91 |
-
# β
Store User Input in Chat History BEFORE Generating Response
|
92 |
-
chat_history.append({'role': 'user', 'content': user_text})
|
93 |
-
|
94 |
-
# β
Detect Intent (NASA vs General AI chat)
|
95 |
action = predict_action(user_text)
|
96 |
|
|
|
97 |
if action == "nasa_info":
|
98 |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
|
99 |
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
100 |
-
|
101 |
-
|
102 |
-
# β
Append to chat history
|
103 |
chat_history.append({'role': 'assistant', 'content': response})
|
104 |
-
|
105 |
-
st.session_state.chat_history = chat_history
|
106 |
-
return response, follow_up, nasa_url
|
107 |
-
|
108 |
-
# β
Format Conversation History for Model Input
|
109 |
-
formatted_chat_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
110 |
|
111 |
# β
Invoke Hugging Face Model
|
112 |
-
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.
|
|
|
|
|
113 |
|
114 |
prompt = PromptTemplate.from_template(
|
115 |
"[INST] You are a helpful AI assistant.\n\nCurrent Conversation:\n{chat_history}\n\n"
|
116 |
"User: {user_text}.\n [/INST]\n"
|
117 |
-
"AI: Provide a detailed explanation with depth. Use a conversational tone."
|
118 |
"π¨ Answer **only in English**."
|
|
|
119 |
"\nHAL:"
|
120 |
)
|
121 |
|
122 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
123 |
-
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=
|
124 |
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
|
125 |
|
126 |
-
# β
Prevent False Language Errors
|
127 |
response = ensure_english(response)
|
128 |
|
129 |
if not response:
|
130 |
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
chat_history.append({'role': 'assistant', 'content': response})
|
136 |
-
chat_history.append({'role': 'assistant', 'content': follow_up})
|
137 |
-
st.session_state.chat_history = chat_history
|
138 |
|
139 |
-
return response,
|
140 |
|
141 |
# β
Streamlit UI
|
142 |
st.title("π HAL - NASA AI Assistant")
|
@@ -145,7 +126,7 @@ st.title("π HAL - NASA AI Assistant")
|
|
145 |
st.markdown("""
|
146 |
<style>
|
147 |
.user-msg, .assistant-msg {
|
148 |
-
padding:
|
149 |
border-radius: 10px;
|
150 |
margin-bottom: 5px;
|
151 |
width: fit-content;
|
@@ -159,22 +140,29 @@ st.markdown("""
|
|
159 |
</style>
|
160 |
""", unsafe_allow_html=True)
|
161 |
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
# β
|
164 |
-
for message in st.session_state.chat_history:
|
165 |
-
st.markdown(f"**{message['role'].capitalize()}**: {message['content']}")
|
166 |
-
|
167 |
-
# β
Chat Input
|
168 |
user_input = st.chat_input("Type your message here...")
|
169 |
|
170 |
if user_input:
|
171 |
-
response,
|
|
|
|
|
|
|
|
|
172 |
|
173 |
if response:
|
174 |
-
st.markdown(f"
|
175 |
-
|
176 |
-
if follow_up:
|
177 |
-
st.markdown(f"**HAL**: {follow_up}")
|
178 |
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from langchain_core.prompts import PromptTemplate
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from transformers import pipeline
|
10 |
+
from langdetect import detect # Ensure this package is installed
|
11 |
|
12 |
# β
Check for GPU or Default to CPU
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
print(f"β
Using device: {device}") # Debugging info
|
15 |
|
16 |
# β
Environment Variables
|
17 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
25 |
# β
Set Up Streamlit
|
26 |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
|
27 |
|
28 |
+
# β
Initialize Session State Variables (Ensuring Chat History Persists)
|
29 |
if "chat_history" not in st.session_state:
|
30 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
31 |
if "response_ready" not in st.session_state:
|
32 |
st.session_state.response_ready = False
|
|
|
|
|
33 |
|
34 |
+
# β
Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
|
35 |
+
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.8):
|
36 |
return HuggingFaceEndpoint(
|
37 |
repo_id=model_id,
|
38 |
max_new_tokens=max_new_tokens,
|
39 |
temperature=temperature,
|
40 |
token=HF_TOKEN,
|
41 |
task="text-generation",
|
42 |
+
device=-1 if device == "cpu" else 0 # β
Force CPU (-1) or GPU (0)
|
43 |
)
|
44 |
|
45 |
# β
NASA API Function
|
|
|
55 |
sentiment_analyzer = pipeline(
|
56 |
"sentiment-analysis",
|
57 |
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
|
58 |
+
device=-1 if device == "cpu" else 0 # β
Force CPU (-1) or GPU (0)
|
59 |
)
|
60 |
|
61 |
def analyze_sentiment(user_text):
|
|
|
68 |
return "nasa_info"
|
69 |
return "general_query"
|
70 |
|
71 |
+
# β
Ensure English Responses
|
72 |
def ensure_english(text):
|
|
|
73 |
try:
|
74 |
detected_lang = detect(text)
|
75 |
+
if detected_lang != "en":
|
76 |
+
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?"
|
77 |
except:
|
78 |
+
return "β οΈ Language detection failed. Please ask your question again."
|
79 |
+
return text
|
|
|
80 |
|
81 |
+
# β
Main Response Function (Follow-Up Question Removed)
|
82 |
+
def get_response(system_message, chat_history, user_text, max_new_tokens=800):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
action = predict_action(user_text)
|
84 |
|
85 |
+
# β
Handle NASA-Specific Queries
|
86 |
if action == "nasa_info":
|
87 |
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
|
88 |
response = f"**{nasa_title}**\n\n{nasa_explanation}"
|
89 |
+
chat_history.append({'role': 'user', 'content': user_text})
|
|
|
|
|
90 |
chat_history.append({'role': 'assistant', 'content': response})
|
91 |
+
return response, chat_history, nasa_url
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# β
Invoke Hugging Face Model
|
94 |
+
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
95 |
+
|
96 |
+
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
|
97 |
|
98 |
prompt = PromptTemplate.from_template(
|
99 |
"[INST] You are a helpful AI assistant.\n\nCurrent Conversation:\n{chat_history}\n\n"
|
100 |
"User: {user_text}.\n [/INST]\n"
|
101 |
+
"AI: Provide a detailed explanation with depth. Use a conversational tone. "
|
102 |
"π¨ Answer **only in English**."
|
103 |
+
"Ensure a friendly, engaging tone."
|
104 |
"\nHAL:"
|
105 |
)
|
106 |
|
107 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
108 |
+
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
109 |
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
|
110 |
|
|
|
111 |
response = ensure_english(response)
|
112 |
|
113 |
if not response:
|
114 |
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
|
115 |
|
116 |
+
# β
Preserve conversation history
|
117 |
+
st.session_state.chat_history.append({'role': 'user', 'content': user_text})
|
118 |
+
st.session_state.chat_history.append({'role': 'assistant', 'content': response})
|
|
|
|
|
|
|
119 |
|
120 |
+
return response, chat_history
|
121 |
|
122 |
# β
Streamlit UI
|
123 |
st.title("π HAL - NASA AI Assistant")
|
|
|
126 |
st.markdown("""
|
127 |
<style>
|
128 |
.user-msg, .assistant-msg {
|
129 |
+
padding: 11px;
|
130 |
border-radius: 10px;
|
131 |
margin-bottom: 5px;
|
132 |
width: fit-content;
|
|
|
140 |
</style>
|
141 |
""", unsafe_allow_html=True)
|
142 |
|
143 |
+
# β
Reset Chat Button
|
144 |
+
if st.sidebar.button("Reset Chat"):
|
145 |
+
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
146 |
+
st.session_state.response_ready = False
|
147 |
|
148 |
+
# β
Chat UI
|
|
|
|
|
|
|
|
|
149 |
user_input = st.chat_input("Type your message here...")
|
150 |
|
151 |
if user_input:
|
152 |
+
response, st.session_state.chat_history = get_response(
|
153 |
+
system_message="You are a helpful AI assistant.",
|
154 |
+
user_text=user_input,
|
155 |
+
chat_history=st.session_state.chat_history
|
156 |
+
)
|
157 |
|
158 |
if response:
|
159 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
|
|
|
|
|
|
160 |
|
161 |
+
# β
Display chat history
|
162 |
+
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
163 |
+
for message in st.session_state.chat_history:
|
164 |
+
if message["role"] == "user":
|
165 |
+
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
166 |
+
else:
|
167 |
+
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
|
168 |
+
st.markdown("</div>", unsafe_allow_html=True)
|