Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,16 +23,13 @@ st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀")
|
|
23 |
# --- Initialize Session State Variables ---
|
24 |
if "chat_history" not in st.session_state:
|
25 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
26 |
-
|
27 |
if "response_ready" not in st.session_state:
|
28 |
st.session_state.response_ready = False
|
29 |
-
|
30 |
if "follow_up" not in st.session_state:
|
31 |
st.session_state.follow_up = ""
|
32 |
|
33 |
# --- Set Up Model & API Functions ---
|
34 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
35 |
-
|
36 |
sentiment_analyzer = pipeline(
|
37 |
"sentiment-analysis",
|
38 |
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
|
@@ -68,35 +65,32 @@ def predict_action(user_text):
|
|
68 |
|
69 |
def generate_follow_up(user_text):
|
70 |
"""
|
71 |
-
Generates
|
72 |
-
|
73 |
"""
|
74 |
prompt_text = (
|
75 |
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
|
76 |
-
"that
|
77 |
-
"'Would you like to
|
78 |
-
"'Would you like to explore something else?' Do not include any extra commentary or meta instructions."
|
79 |
)
|
80 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
81 |
output = hf.invoke(input=prompt_text).strip()
|
82 |
-
# Split the output into separate lines if the model returns multiple variants.
|
83 |
variants = re.split(r"\n|[;]+", output)
|
84 |
-
# Clean up any extraneous quotes or unwanted text.
|
85 |
cleaned = [v.strip(' "\'') for v in variants if v.strip()]
|
86 |
-
# If no valid variants are found, provide a default fallback.
|
87 |
if not cleaned:
|
88 |
cleaned = ["Would you like to explore this topic further?"]
|
89 |
return random.choice(cleaned)
|
90 |
|
91 |
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
92 |
"""
|
93 |
-
Generates HAL's
|
94 |
-
|
|
|
95 |
"""
|
96 |
sentiment = analyze_sentiment(user_text)
|
97 |
action = predict_action(user_text)
|
98 |
|
99 |
-
#
|
100 |
style_instruction = ""
|
101 |
lower_text = user_text.lower()
|
102 |
if "in the voice of" in lower_text or "speaking as" in lower_text:
|
@@ -115,7 +109,6 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
115 |
return response, follow_up, chat_history, nasa_url
|
116 |
|
117 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
118 |
-
|
119 |
filtered_history = ""
|
120 |
for message in chat_history:
|
121 |
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
|
@@ -124,21 +117,27 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
|
124 |
|
125 |
style_clause = style_instruction if style_instruction else ""
|
126 |
|
|
|
127 |
prompt = PromptTemplate.from_template(
|
128 |
(
|
129 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
130 |
"User: {user_text}.\n [/INST]\n"
|
131 |
-
"AI: Please
|
132 |
-
"
|
133 |
-
"'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
|
134 |
"\nHAL:"
|
135 |
)
|
136 |
)
|
137 |
|
138 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
139 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
|
|
140 |
response = response.split("HAL:")[-1].strip()
|
141 |
|
|
|
|
|
|
|
|
|
142 |
chat_history.append({'role': 'user', 'content': user_text})
|
143 |
chat_history.append({'role': 'assistant', 'content': response})
|
144 |
|
@@ -200,10 +199,8 @@ if user_input:
|
|
200 |
user_text=user_input,
|
201 |
chat_history=st.session_state.chat_history
|
202 |
)
|
203 |
-
|
204 |
if image_url:
|
205 |
st.image(image_url, caption="NASA Image of the Day")
|
206 |
-
|
207 |
st.session_state.follow_up = follow_up
|
208 |
st.session_state.response_ready = True
|
209 |
|
|
|
23 |
# --- Initialize Session State Variables ---
|
24 |
if "chat_history" not in st.session_state:
|
25 |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
|
|
26 |
if "response_ready" not in st.session_state:
|
27 |
st.session_state.response_ready = False
|
|
|
28 |
if "follow_up" not in st.session_state:
|
29 |
st.session_state.follow_up = ""
|
30 |
|
31 |
# --- Set Up Model & API Functions ---
|
32 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
|
|
33 |
sentiment_analyzer = pipeline(
|
34 |
"sentiment-analysis",
|
35 |
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
|
|
|
65 |
|
66 |
def generate_follow_up(user_text):
|
67 |
"""
|
68 |
+
Generates two variant follow-up questions and randomly selects one.
|
69 |
+
It also cleans up any unwanted quotation marks or extra meta commentary.
|
70 |
"""
|
71 |
prompt_text = (
|
72 |
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
|
73 |
+
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
|
74 |
+
"and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary."
|
|
|
75 |
)
|
76 |
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
|
77 |
output = hf.invoke(input=prompt_text).strip()
|
|
|
78 |
variants = re.split(r"\n|[;]+", output)
|
|
|
79 |
cleaned = [v.strip(' "\'') for v in variants if v.strip()]
|
|
|
80 |
if not cleaned:
|
81 |
cleaned = ["Would you like to explore this topic further?"]
|
82 |
return random.choice(cleaned)
|
83 |
|
84 |
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
85 |
"""
|
86 |
+
Generates HAL's answer with depth and a follow-up question.
|
87 |
+
The prompt instructs the model to provide a detailed explanation and then generate a follow-up.
|
88 |
+
If the answer comes back empty, a fallback answer is used.
|
89 |
"""
|
90 |
sentiment = analyze_sentiment(user_text)
|
91 |
action = predict_action(user_text)
|
92 |
|
93 |
+
# Extract style instruction if present
|
94 |
style_instruction = ""
|
95 |
lower_text = user_text.lower()
|
96 |
if "in the voice of" in lower_text or "speaking as" in lower_text:
|
|
|
109 |
return response, follow_up, chat_history, nasa_url
|
110 |
|
111 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
|
|
|
112 |
filtered_history = ""
|
113 |
for message in chat_history:
|
114 |
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
|
|
|
117 |
|
118 |
style_clause = style_instruction if style_instruction else ""
|
119 |
|
120 |
+
# Instruct the model to generate a detailed, in-depth answer.
|
121 |
prompt = PromptTemplate.from_template(
|
122 |
(
|
123 |
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
|
124 |
"User: {user_text}.\n [/INST]\n"
|
125 |
+
"AI: Please provide a detailed explanation in depth. "
|
126 |
+
"Ensure your response covers the topic thoroughly and is written in a friendly, conversational style, "
|
127 |
+
"starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
|
128 |
"\nHAL:"
|
129 |
)
|
130 |
)
|
131 |
|
132 |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
133 |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
|
134 |
+
# Remove any extra markers if present.
|
135 |
response = response.split("HAL:")[-1].strip()
|
136 |
|
137 |
+
# Fallback in case the generated answer is empty
|
138 |
+
if not response:
|
139 |
+
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
|
140 |
+
|
141 |
chat_history.append({'role': 'user', 'content': user_text})
|
142 |
chat_history.append({'role': 'assistant', 'content': response})
|
143 |
|
|
|
199 |
user_text=user_input,
|
200 |
chat_history=st.session_state.chat_history
|
201 |
)
|
|
|
202 |
if image_url:
|
203 |
st.image(image_url, caption="NASA Image of the Day")
|
|
|
204 |
st.session_state.follow_up = follow_up
|
205 |
st.session_state.response_ready = True
|
206 |
|