CCockrum commited on
Commit
ffbccbb
·
verified ·
1 Parent(s): b06581e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -11
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import os
 
2
  import requests
3
  import streamlit as st
4
  from langchain_huggingface import HuggingFaceEndpoint
@@ -70,16 +71,21 @@ def predict_action(user_text):
70
  def generate_follow_up(user_text):
71
  """
72
  Generates a concise and conversational follow-up question related to the user's input.
73
- This version uses a clear prompt and provides a fallback if the generated output is empty.
74
  """
75
  prompt_text = (
76
- f"Generate a friendly, concise follow-up question based on the user's question: '{user_text}'. "
77
- "The follow-up should invite further discussion. For example, if the user asked about quarks, you might ask, "
78
- "'Would you like to learn more about the six types of quarks, or is there another topic you're curious about?' "
79
- "Always return a follow-up question."
80
  )
81
  hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.8)
82
  follow_up = hf.invoke(input=prompt_text).strip()
 
 
 
 
 
83
  if not follow_up:
84
  follow_up = "Would you like to explore this topic further?"
85
  return follow_up
@@ -87,11 +93,22 @@ def generate_follow_up(user_text):
87
  def get_response(system_message, chat_history, user_text, max_new_tokens=256):
88
  """
89
  Generates HAL's response in a friendly, conversational manner.
90
- Uses sentiment analysis to adjust tone when appropriate.
91
- Always generates a follow-up question that is appended to the chat history.
 
92
  """
93
  sentiment = analyze_sentiment(user_text)
94
  action = predict_action(user_text)
 
 
 
 
 
 
 
 
 
 
95
 
96
  # Handle NASA-related queries separately.
97
  if action == "nasa_info":
@@ -112,13 +129,19 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
112
  continue
113
  filtered_history += f"{message['role']}: {message['content']}\n"
114
 
 
 
 
 
 
115
  prompt = PromptTemplate.from_template(
116
  (
117
  "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
118
  "User: {user_text}.\n [/INST]\n"
119
- "AI: Please answer the user's question without repeating previous greetings. "
120
- "Keep your response friendly and conversational, starting with a phrase like "
121
- "'Certainly!', 'Of course!', or 'Great question!'.\nHAL:"
 
122
  )
123
  )
124
 
@@ -129,7 +152,7 @@ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
129
  chat_history.append({'role': 'user', 'content': user_text})
130
  chat_history.append({'role': 'assistant', 'content': response})
131
 
132
- # Only override with an empathetic response for negative sentiment if appropriate.
133
  if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
134
  response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
135
  chat_history[-1]['content'] = response
 
1
  import os
2
+ import re
3
  import requests
4
  import streamlit as st
5
  from langchain_huggingface import HuggingFaceEndpoint
 
71
  def generate_follow_up(user_text):
72
  """
73
  Generates a concise and conversational follow-up question related to the user's input.
74
+ The prompt instructs the model to avoid meta commentary.
75
  """
76
  prompt_text = (
77
+ f"Generate a concise, friendly follow-up question based on the user's question: '{user_text}'. "
78
+ "Do not include meta instructions or commentary such as 'Never return just a statement.' "
79
+ "For example, if the user asked about quarks, you might ask: "
80
+ "'Would you like to know more about the six types of quarks, or is there another aspect of quantum physics you're curious about?'"
81
  )
82
  hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.8)
83
  follow_up = hf.invoke(input=prompt_text).strip()
84
+ # Remove extraneous quotes if present.
85
+ follow_up = follow_up.strip('\'"')
86
+ # Optionally, remove any unwanted phrases (you can add more replacements if needed).
87
+ follow_up = re.sub(r"Never return just a statement\.?", "", follow_up, flags=re.IGNORECASE).strip()
88
+ # Ensure that something non-empty is returned.
89
  if not follow_up:
90
  follow_up = "Would you like to explore this topic further?"
91
  return follow_up
 
93
  def get_response(system_message, chat_history, user_text, max_new_tokens=256):
94
  """
95
  Generates HAL's response in a friendly, conversational manner.
96
+ Uses sentiment analysis to adjust tone when appropriate and always generates a follow-up question.
97
+ If the user's input includes style instructions (e.g., 'in the voice of an astrophysicist'),
98
+ the prompt instructs HAL to adapt accordingly.
99
  """
100
  sentiment = analyze_sentiment(user_text)
101
  action = predict_action(user_text)
102
+
103
+ # Check for style instructions in the user message.
104
+ style_instruction = ""
105
+ lower_text = user_text.lower()
106
+ if "in the voice of" in lower_text or "speaking as" in lower_text:
107
+ # Extract the style instruction (a simple heuristic: take the part after "in the voice of")
108
+ match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
109
+ if match:
110
+ style_instruction = match.group(2).strip().capitalize()
111
+ style_instruction = f" Please respond in the voice of {style_instruction}."
112
 
113
  # Handle NASA-related queries separately.
114
  if action == "nasa_info":
 
129
  continue
130
  filtered_history += f"{message['role']}: {message['content']}\n"
131
 
132
+ # Add style instruction to the prompt if applicable.
133
+ style_clause = ""
134
+ if style_instruction:
135
+ style_clause = style_instruction
136
+
137
  prompt = PromptTemplate.from_template(
138
  (
139
  "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
140
  "User: {user_text}.\n [/INST]\n"
141
+ "AI: Please answer the user's question without repeating any previous greetings."
142
+ " Keep your response friendly and conversational, starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." +
143
+ style_clause +
144
+ "\nHAL:"
145
  )
146
  )
147
 
 
152
  chat_history.append({'role': 'user', 'content': user_text})
153
  chat_history.append({'role': 'assistant', 'content': response})
154
 
155
+ # Only override with an empathetic response for negative sentiment if the input is not a direct question.
156
  if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
157
  response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
158
  chat_history[-1]['content'] = response