import os import requests import streamlit as st from langchain_huggingface import HuggingFaceEndpoint from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from transformers import pipeline from config import NASA_API_KEY # Ensure this file exists with your NASA API Key # Set up Streamlit UI st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="šŸš€") # --- Ensure Session State Variables are Initialized --- if "chat_history" not in st.session_state: st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] if "response_ready" not in st.session_state: st.session_state.response_ready = False # Tracks whether HAL has responded # --- Set Up Model & API Functions --- model_id = "mistralai/Mistral-7B-Instruct-v0.3" # Initialize sentiment analysis pipeline sentiment_analyzer = pipeline("sentiment-analysis") def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1): return HuggingFaceEndpoint( repo_id=model_id, max_new_tokens=max_new_tokens, temperature=temperature, token=os.getenv("HF_TOKEN") # Hugging Face API Token ) def get_nasa_apod(): url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" response = requests.get(url) if response.status_code == 200: data = response.json() return data.get("url", ""), data.get("title", ""), data.get("explanation", "") else: return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later." def analyze_sentiment(user_text): result = sentiment_analyzer(user_text)[0] return result['label'] def predict_action(user_text): if "NASA" in user_text or "space" in user_text: return "nasa_info" return "general_query" def generate_follow_up(user_text): prompt_text = ( f"Based on the user's message: '{user_text}', suggest a natural follow-up question " "to keep the conversation engaging." ) hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7) return hf.invoke(input=prompt_text).strip() def get_response(system_message, chat_history, user_text, max_new_tokens=256): sentiment = analyze_sentiment(user_text) action = predict_action(user_text) if action == "nasa_info": nasa_url, nasa_title, nasa_explanation = get_nasa_apod() response = f"**{nasa_title}**\n\n{nasa_explanation}" chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': response}) follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return response, follow_up, chat_history, nasa_url hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1) prompt = PromptTemplate.from_template( "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:" ) chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history)) response = response.split("AI:")[-1] chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': response}) if sentiment == "NEGATIVE": response += "\nšŸ˜ž I'm sorry to hear that. How can I assist you further?" follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return response, follow_up, chat_history, None # --- Chat UI --- st.title("šŸš€ HAL - Your NASA AI Assistant") st.markdown("🌌 *Ask me about space, NASA, and beyond!*") # Sidebar: Reset Chat if st.sidebar.button("Reset Chat"): st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] st.session_state.response_ready = False st.experimental_rerun() # Custom Chat Styling st.markdown(""" """, unsafe_allow_html=True) # Chat History Display st.markdown("
", unsafe_allow_html=True) for message in st.session_state.chat_history: if message["role"] == "user": st.markdown(f"
You: {message['content']}
", unsafe_allow_html=True) else: st.markdown(f"
HAL: {message['content']}
", unsafe_allow_html=True) st.markdown("
", unsafe_allow_html=True) # --- Input & Button Handling --- user_input = st.text_area("Type your message:", height=100) send_button_placeholder = st.empty() if not st.session_state.response_ready: if send_button_placeholder.button("Send"): if user_input: response, follow_up, st.session_state.chat_history, image_url = get_response( system_message="You are a helpful AI assistant.", user_text=user_input, chat_history=st.session_state.chat_history ) st.markdown(f"
HAL: {response}
", unsafe_allow_html=True) if image_url: st.image(image_url, caption="NASA Image of the Day") st.session_state.response_ready = True # Hide Send button after response # Conversational Follow-up if st.session_state.response_ready: st.markdown(f"
HAL: {follow_up}
", unsafe_allow_html=True) next_input = st.text_input("HAL is waiting for your response...") if next_input: response, _, st.session_state.chat_history, _ = get_response( system_message="You are a helpful AI assistant.", user_text=next_input, chat_history=st.session_state.chat_history ) st.markdown(f"
HAL: {response}
", unsafe_allow_html=True) st.session_state.response_ready = False # Allow new input