import os import requests import streamlit as st from langchain_huggingface import HuggingFaceEndpoint from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from transformers import pipeline from config import NASA_API_KEY # Ensure this file exists with your NASA API Key # Model settings model_id = "mistralai/Mistral-7B-Instruct-v0.3" # Initialize sentiment analysis pipeline sentiment_analyzer = pipeline("sentiment-analysis") # Function to initialize Hugging Face model def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1): return HuggingFaceEndpoint( repo_id=model_id, max_new_tokens=max_new_tokens, temperature=temperature, token=os.getenv("HF_TOKEN") # Hugging Face API Token ) # Function to get NASA Astronomy Picture of the Day def get_nasa_apod(): url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" response = requests.get(url) if response.status_code == 200: data = response.json() return data.get("url", ""), data.get("title", ""), data.get("explanation", "") else: return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later." # Function to analyze sentiment of user input def analyze_sentiment(user_text): result = sentiment_analyzer(user_text)[0] return result['label'] # Function to predict user intent def predict_action(user_text): if "NASA" in user_text or "space" in user_text: return "nasa_info" return "general_query" # Function to generate a follow-up question def generate_follow_up(user_text): prompt_text = ( f"Based on the user's message: '{user_text}', suggest a natural follow-up question " "to keep the conversation engaging." ) hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7) return hf.invoke(input=prompt_text).strip() # Function to process user input and generate a response def get_response(system_message, chat_history, user_text, max_new_tokens=256): sentiment = analyze_sentiment(user_text) action = predict_action(user_text) if action == "nasa_info": nasa_url, nasa_title, nasa_explanation = get_nasa_apod() response = f"**{nasa_title}**\n\n{nasa_explanation}" chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': response}) follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return response, follow_up, chat_history, nasa_url hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1) prompt = PromptTemplate.from_template( "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:" ) chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history)) response = response.split("AI:")[-1] chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': response}) if sentiment == "NEGATIVE": response += "\nš I'm sorry to hear that. How can I assist you further?" follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return response, follow_up, chat_history, None # --- Streamlit UI Setup --- st.set_page_config(page_title="NASA ChatBot", page_icon="š") st.title("š HAL - Your NASA AI Assistant") st.markdown("š *Ask me about space, NASA, and beyond!*") # Ensure chat history is initialized if "chat_history" not in st.session_state: st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] # Sidebar for chat reset if st.sidebar.button("Reset Chat"): st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] st.experimental_rerun() # Chat Display Styling st.markdown(""" """, unsafe_allow_html=True) # Chat Display st.markdown("