import os import re import random import requests import streamlit as st from langchain_huggingface import HuggingFaceEndpoint from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from transformers import pipeline from langdetect import detect # Ensure this package is installed # ✅ Environment Variables HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.") NASA_API_KEY = os.getenv("NASA_API_KEY") if NASA_API_KEY is None: raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.") # ✅ Set Up Streamlit st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀") # ✅ Ensure Session State Variables if "chat_history" not in st.session_state: st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] if "response_ready" not in st.session_state: st.session_state.response_ready = False if "follow_up" not in st.session_state: st.session_state.follow_up = "" # ✅ Model Configuration model_id = "mistralai/Mistral-7B-Instruct-v0.3" # ✅ Initialize Hugging Face Model def get_llm_hf_inference(model_id=model_id, max_new_tokens=1024, temperature=0.7): return HuggingFaceEndpoint( repo_id=model_id, max_new_tokens=max_new_tokens, temperature=temperature, token=HF_TOKEN, task="text-generation" ) # ✅ NASA API Function def get_nasa_apod(): url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" response = requests.get(url) if response.status_code == 200: data = response.json() return data.get("url", ""), data.get("title", ""), data.get("explanation", "") return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now." # ✅ Sentiment Analysis sentiment_analyzer = pipeline( "sentiment-analysis", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english" ) def analyze_sentiment(user_text): result = sentiment_analyzer(user_text)[0] return result['label'] # ✅ Intent Detection def predict_action(user_text): if "NASA" in user_text or "space" in user_text: return "nasa_info" return "general_query" # ✅ Follow-Up Question Generation def generate_follow_up(user_text): prompt_text = f"Based on: '{user_text}', generate a concise, friendly follow-up." hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9) output = hf.invoke(input=prompt_text).strip() return output if output else "Would you like to explore this topic further?" # ✅ Ensure English Responses def ensure_english(text): try: detected_lang = detect(text) if detected_lang != "en": return "⚠️ Sorry, I only respond in English. Can you rephrase your question?" except: return "⚠️ Language detection failed. Please ask your question again." return text # ✅ Ensure Every Response Has a Follow-Up Question def generate_follow_up(user_text): """Generates a follow-up question to guide the user toward related topics or next steps.""" prompt_text = ( f"Given the user's question: '{user_text}', generate a SHORT follow-up question " "suggesting either a related topic or asking if they need further help. " "Example: 'Would you like to explore quantum superposition or ask about another physics concept?' " "Keep it concise and engaging." ) hf = get_llm_hf_inference(max_new_tokens=40, temperature=0.8) output = hf.invoke(input=prompt_text).strip() # Fallback in case of an empty response return output if output else "Would you like to explore another related topic or ask about something else?" # ✅ Main Response Function def get_response(system_message, chat_history, user_text, max_new_tokens=512): action = predict_action(user_text) # 🔥 Fix: Define 'action' # ✅ Handle NASA-Specific Queries if action == "nasa_info": nasa_url, nasa_title, nasa_explanation = get_nasa_apod() response = f"**{nasa_title}**\n\n{nasa_explanation}" chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': response}) follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return response, follow_up, chat_history, nasa_url # ✅ Set Up LLM Request hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9) # ✅ Format Chat History filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history) # ✅ Prompt Engineering prompt = PromptTemplate.from_template( "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n" "User: {user_text}.\n [/INST]\n" "AI: Provide a detailed explanation with depth. " "Use a conversational style, starting with 'Certainly!', 'Of course!', or 'Great question!'." "🚨 Answer **only in English**." "\nHAL:" ) # ✅ Invoke LLM Model chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history)) response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip() # ✅ Ensure English response = ensure_english(response) # ✅ Fallback Response if not response: response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?" chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': response}) follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return response, follow_up, chat_history, None # ✅ Streamlit UI st.title("🚀 HAL - NASA AI Assistant") # ✅ Reset Chat Button if st.sidebar.button("Reset Chat"): st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] st.session_state.response_ready = False st.session_state.follow_up = "" # ✅ Chat UI user_input = st.chat_input("Type your message here...") if user_input: # ✅ Ensure get_response() returns a response response, follow_up, st.session_state.chat_history, image_url = get_response( system_message="You are a helpful AI assistant.", user_text=user_input, chat_history=st.session_state.chat_history ) # ✅ Ensure response is not empty before calling st.markdown() if response: st.markdown(f"