import os import re import random import requests import streamlit as st from langchain_huggingface import HuggingFaceEndpoint from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from transformers import pipeline # Must be the first Streamlit command! st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀") # --- Initialize Session State Variables --- if "chat_history" not in st.session_state: st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] if "response_ready" not in st.session_state: st.session_state.response_ready = False if "follow_up" not in st.session_state: st.session_state.follow_up = "" # --- Set Up Model & API Functions --- model_id = "mistralai/Mistral-7B-Instruct-v0.3" sentiment_analyzer = pipeline( "sentiment-analysis", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english", revision="714eb0f" ) def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7): return HuggingFaceEndpoint( repo_id=model_id, max_new_tokens=max_new_tokens, temperature=temperature, token=os.getenv("HF_TOKEN"), task="text-generation" ) def get_nasa_apod(): url = f"https://api.nasa.gov/planetary/apod?api_key={os.getenv('NASA_API_KEY')}" response = requests.get(url) if response.status_code == 200: data = response.json() return data.get("url", ""), data.get("title", ""), data.get("explanation", "") else: return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later." def analyze_sentiment(user_text): result = sentiment_analyzer(user_text)[0] return result['label'] def predict_action(user_text): if "nasa" in user_text.lower() or "space" in user_text.lower(): return "nasa_info" return "general_query" def generate_follow_up(user_text): """ Generates one concise, friendly follow-up question related to the user's input. The prompt instructs the model to output a single question without extra commentary. """ prompt_text = ( f"Generate one concise, friendly follow-up question related to the topic of the user's question: '{user_text}'. " "The output should be only the question, with no extra text." ) hf = get_llm_hf_inference(max_new_tokens=60, temperature=0.9) output = hf.invoke(input=prompt_text).strip() # If the output is too short or empty, return a default fallback question. if len(output) < 10: return "Would you like to explore this topic further?" # Clean the output from any extraneous quotes. follow_up = output.strip(' "\'') return follow_up def get_response(system_message, chat_history, user_text, max_new_tokens=256): """ Generates HAL's response with a detailed explanation and a follow-up question. Style instructions (e.g. "in the voice of a physicist") are appended if present. """ sentiment = analyze_sentiment(user_text) action = predict_action(user_text) # Extract style instruction if present. style_instruction = "" lower_text = user_text.lower() if "in the voice of" in lower_text or "speaking as" in lower_text: match = re.search(r"(in the voice of|speaking as)(.*)", lower_text) if match: style_instruction = match.group(2).strip().capitalize() style_instruction = f" Please respond in the voice of {style_instruction}." if action == "nasa_info": nasa_url, nasa_title, nasa_explanation = get_nasa_apod() response = f"**{nasa_title}**\n\n{nasa_explanation}" chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': response}) follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return response, follow_up, chat_history, nasa_url hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9) filtered_history = "" for message in chat_history: if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?": continue filtered_history += f"{message['role']}: {message['content']}\n" style_clause = style_instruction if style_instruction else "" prompt = PromptTemplate.from_template( ( "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n" "User: {user_text}.\n [/INST]\n" "AI: Please provide a detailed, in-depth answer in a friendly, conversational tone. " "Begin with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause + "\nHAL:" ) ) chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history)) response = response.split("HAL:")[-1].strip() if not response: response = "Certainly, here is an in-depth explanation: [Fallback explanation]." chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': response}) if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"): response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?" chat_history[-1]['content'] = response follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return response, follow_up, chat_history, None # --- Chat UI --- st.title("🚀 HAL - Your NASA AI Assistant") st.markdown("🌌 *Ask me about space, NASA, and beyond!*") if st.sidebar.button("Reset Chat"): st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] st.session_state.response_ready = False st.session_state.follow_up = "" st.experimental_rerun() # Render the chat history. st.markdown("