import os import requests import streamlit as st from langchain_huggingface import HuggingFaceEndpoint from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from transformers import pipeline # for Sentiment Analysis from config import NASA_API_KEY # Import the NASA API key from the configuration file model_id = "mistralai/Mistral-7B-Instruct-v0.3" # Initialize sentiment analysis pipeline sentiment_analyzer = pipeline("sentiment-analysis") def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1): llm = HuggingFaceEndpoint( repo_id=model_id, max_new_tokens=max_new_tokens, temperature=temperature, token=os.getenv("HF_TOKEN") # Hugging Face token from environment variable ) return llm def get_nasa_apod(): """ Fetch the Astronomy Picture of the Day (APOD) from the NASA API. """ url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}" response = requests.get(url) if response.status_code == 200: data = response.json() return f"Title: {data['title']}\nExplanation: {data['explanation']}\nURL: {data['url']}" else: return "I couldn't fetch data from NASA right now. Please try again later." def analyze_sentiment(user_text): """ Analyzes the sentiment of the user's input to adjust responses. """ result = sentiment_analyzer(user_text)[0] sentiment = result['label'] return sentiment def predict_action(user_text): """ Predicts actions based on user input (e.g., fetch space info or general knowledge). """ if "NASA" in user_text or "space" in user_text: return "nasa_info" if "weather" in user_text: return "weather_info" return "general_query" def generate_follow_up(user_text): """ Generates a relevant follow-up question based on the user's input. """ prompt_text = ( f"Given the user's message: '{user_text}', ask one natural follow-up question " "that suggests a related topic or offers user the opportunity to go in a new direction." ) hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7) chat = hf.invoke(input=prompt_text) return chat.strip() def get_response(system_message, chat_history, user_text, eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}): sentiment = analyze_sentiment(user_text) action = predict_action(user_text) if action == "nasa_info": nasa_response = get_nasa_apod() chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': nasa_response}) follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return f"{nasa_response}\n\n{follow_up}", chat_history hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1) prompt = PromptTemplate.from_template( ( "[INST] {system_message}" "\nCurrent Conversation:\n{chat_history}\n\n" "\nUser: {user_text}.\n [/INST]" "\nAI:" ) ) chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history)) response = response.split("AI:")[-1] chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': response}) # Modify response based on sentiment analysis (e.g., offer help for negative sentiments) if sentiment == "NEGATIVE": response += "\nI'm sorry to hear that. How can I assist you further?" follow_up = generate_follow_up(user_text) chat_history.append({'role': 'assistant', 'content': follow_up}) return f"{response}\n\n{follow_up}", chat_history # Streamlit setup st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗") st.title("NASA Personal Assistant") st.markdown(f"*This chatbot uses {model_id} and NASA's APIs to provide information and responses.*") # Initialize session state if "chat_history" not in st.session_state: st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] # Sidebar for settings if st.sidebar.button("Reset Chat"): st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] # Main chat interface user_input = st.chat_input(placeholder="Type your message here...") if user_input: response, st.session_state.chat_history = get_response( system_message="You are a helpful AI assistant.", user_text=user_input, chat_history=st.session_state.chat_history, max_new_tokens=128 ) # Display messages for message in st.session_state.chat_history: st.chat_message(message["role"]).write(message["content"]) if st.button("Send"): if user_input: response, follow_up, st.session_state.chat_history, image_url = get_response( system_message="You are a helpful AI assistant.", user_text=user_input, chat_history=st.session_state.chat_history ) # Display response st.markdown(f"
HAL: {response}
", unsafe_allow_html=True) # Display NASA image if available if image_url: st.image(image_url, caption="NASA Image of the Day") # Follow-up question suggestions follow_up_options = [follow_up, "Explain differently", "Give me an example"] selected_option = st.radio("What would you like to do next?", follow_up_options) if st.button("Continue"): if selected_option: response, _, st.session_state.chat_history, _ = get_response( system_message="You are a helpful AI assistant.", user_text=selected_option, chat_history=st.session_state.chat_history ) st.markdown(f"
HAL: {response}
", unsafe_allow_html=True)