File size: 10,506 Bytes
789726d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677d102
 
789726d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677d102
789726d
 
 
 
 
 
 
 
 
 
 
 
 
677d102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789726d
 
677d102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789726d
 
677d102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789726d
 
 
 
677d102
789726d
 
 
 
677d102
789726d
677d102
789726d
 
 
677d102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import re
import requests
import torch
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect  # Ensure this package is installed

# βœ… Check for GPU or Default to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"βœ… Using device: {device}")  # Debugging info

# βœ… Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")

# βœ… Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# βœ… Initialize Session State Variables (Ensuring Chat History Persists)
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "listening" not in st.session_state:
    st.session_state.listening = False

# βœ… Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.3):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,  # πŸ”₯ Lowered temperature for more factual and structured responses
        token=HF_TOKEN,
        task="text-generation",
        device=-1 if device == "cpu" else 0  # βœ… Force CPU (-1) or GPU (0)
    )

# βœ… Ensure English Responses
def ensure_english(text):
    try:
        detected_lang = detect(text)
        if detected_lang != "en":
            return "⚠️ Sorry, I only respond in English. Can you rephrase your question?"
    except:
        return "⚠️ Language detection failed. Please ask your question again."
    return text

# βœ… Main Response Function (Fixing Repetition & Context)
def get_response(system_message, chat_history, user_text, max_new_tokens=800):
    # βœ… Ensure conversation history is included correctly
    filtered_history = "\n".join(
        f"{msg['role'].capitalize()}: {msg['content']}"
        for msg in chat_history[-5:]  # βœ… Only keep the last 5 exchanges to prevent overflow
    )
 
    prompt = PromptTemplate.from_template(
        "[INST] You are a highly knowledgeable AI assistant. Answer concisely, avoid repetition, and structure responses well."
        "\n\nCONTEXT:\n{chat_history}\n"
        "\nLATEST USER INPUT:\nUser: {user_text}\n"
        "\n[END CONTEXT]\n"
        "Assistant:"
    )

    # βœ… Invoke Hugging Face Model
    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3)  # πŸ”₯ Lowered temperature
    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')

    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
    
    # Clean up the response - remove any "HAL:" prefix if present
    response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
    response = ensure_english(response)

    if not response:
        response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"

    # βœ… Update conversation history
    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})

    # βœ… Keep only last 10 exchanges to prevent unnecessary repetition
    return response, chat_history[-10:]

# βœ… Streamlit UI
st.title("πŸš€ HAL - NASA AI Assistant")

# βœ… Add styles and speech recognition JavaScript
st.markdown("""
    <style>
    .user-msg, .assistant-msg {
        padding: 11px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
        text-align: justify;
    }
    .user-msg { background-color: #696969; color: white; }
    .assistant-msg { background-color: #333333; color: white; }
    .container { display: flex; flex-direction: column; align-items: flex-start; }
    .speech-button {
        background-color: #4CAF50;
        border: none;
        color: white;
        padding: 10px 15px;
        text-align: center;
        text-decoration: none;
        display: inline-block;
        font-size: 16px;
        margin: 4px 2px;
        cursor: pointer;
        border-radius: 12px;
    }
    .speak-button {
        background-color: #2196F3;
        border: none;
        color: white;
        padding: 5px 10px;
        text-align: center;
        text-decoration: none;
        display: inline-block;
        font-size: 12px;
        margin: 2px 2px;
        cursor: pointer;
        border-radius: 12px;
    }
    @media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
    </style>
    
    <script>
    // Speech Recognition Setup
    let recognition;
    let isListening = false;
    
    function setupSpeechRecognition() {
        try {
            window.SpeechRecognition = window.SpeechRecognition || window.webkitSpeechRecognition;
            recognition = new SpeechRecognition();
            recognition.lang = 'en-US';
            recognition.interimResults = false;
            recognition.maxAlternatives = 1;
            
            recognition.onresult = function(event) {
                const speechResult = event.results[0][0].transcript;
                document.getElementById('speech-result').value = speechResult;
                document.getElementById('submit-speech').click();
            };
            
            recognition.onerror = function(event) {
                console.error('Speech recognition error:', event.error);
                isListening = false;
                updateMicButton();
            };
            
            recognition.onend = function() {
                isListening = false;
                updateMicButton();
            };
            
            return true;
        } catch (error) {
            console.error('Speech recognition not supported:', error);
            return false;
        }
    }
    
    function toggleSpeechRecognition() {
        if (!recognition) {
            if (!setupSpeechRecognition()) {
                alert('Speech recognition is not supported in your browser.');
                return;
            }
        }
        
        if (isListening) {
            recognition.stop();
            isListening = false;
        } else {
            recognition.start();
            isListening = true;
        }
        
        updateMicButton();
    }
    
    function updateMicButton() {
        const micButton = document.getElementById('mic-button');
        if (micButton) {
            micButton.textContent = isListening ? 'πŸ›‘ Stop Listening' : '🎀 Start Voice Input';
            micButton.style.backgroundColor = isListening ? '#f44336' : '#4CAF50';
        }
    }
    
    // Text-to-Speech functionality
    function speakText(text) {
        const utterance = new SpeechSynthesisUtterance(text);
        utterance.lang = 'en-US';
        utterance.pitch = 1;
        utterance.rate = 1;
        window.speechSynthesis.speak(utterance);
    }
    
    // Initialize after the page loads
    document.addEventListener('DOMContentLoaded', function() {
        setupSpeechRecognition();
    });
    </script>
""", unsafe_allow_html=True)

# Add voice control components
col1, col2 = st.columns([4, 1])
with col1:
    user_input = st.chat_input("Type your message here...")

with col2:
    st.markdown("""
        <button id="mic-button" onclick="toggleSpeechRecognition()" class="speech-button">
            🎀 Start Voice Input
        </button>
        <input type="hidden" id="speech-result">
        <button id="submit-speech" style="display:none;"></button>
    """, unsafe_allow_html=True)

# Handle form for speech input (hidden)
speech_result = st.text_input("Speech Result", key="speech_input", label_visibility="collapsed")
if speech_result:
    user_input = speech_result
    # Reset the speech input
    st.session_state.speech_input = ""

if user_input:
    # Get response and update chat history
    response, st.session_state.chat_history = get_response(
        system_message="You are a helpful AI assistant specializing in NASA and space information.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )

# βœ… Display chat history with speak buttons
st.markdown("<div class='container'>", unsafe_allow_html=True)
for i, message in enumerate(st.session_state.chat_history):
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        speak_button = f"""
        <button onclick="speakText(`{message['content'].replace('`', '\'').replace('"', '\'')}`)" class="speak-button">
            πŸ”Š Speak
        </button>
        """
        st.markdown(
            f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']} {speak_button}</div>", 
            unsafe_allow_html=True
        )
st.markdown("</div>", unsafe_allow_html=True)

# Add JavaScript event listener for the submit button
components_js = """
<script>
document.getElementById('submit-speech').addEventListener('click', function() {
    const speechResult = document.getElementById('speech-result').value;
    if (speechResult) {
        // Update the Streamlit text input with the speech result
        const textInputs = document.querySelectorAll('input[type="text"]');
        if (textInputs.length > 0) {
            const lastInput = textInputs[0];
            lastInput.value = speechResult;
            lastInput.dispatchEvent(new Event('input', { bubbles: true }));
            
            // Find and click the submit button
            setTimeout(() => {
                const buttons = document.querySelectorAll('button[kind="primaryForm"]');
                for (const button of buttons) {
                    if (button.textContent.includes('Submit')) {
                        button.click();
                        break;
                    }
                }
            }, 100);
        }
    }
});
</script>
"""
st.components.v1.html(components_js, height=0)